Geometric Multivector Analysis

Geometric Multivector Analysis

Author: Andreas Rosén

Publisher: Springer Nature

ISBN: 9783030314118

Category: Mathematics

Page: 465

View: 853

This book presents a step-by-step guide to the basic theory of multivectors and spinors, with a focus on conveying to the reader the geometric understanding of these abstract objects. Following in the footsteps of M. Riesz and L. Ahlfors, the book also explains how Clifford algebra offers the ideal tool for studying spacetime isometries and Möbius maps in arbitrary dimensions. The book carefully develops the basic calculus of multivector fields and differential forms, and highlights novelties in the treatment of, e.g., pullbacks and Stokes’s theorem as compared to standard literature. It touches on recent research areas in analysis and explains how the function spaces of multivector fields are split into complementary subspaces by the natural first-order differential operators, e.g., Hodge splittings and Hardy splittings. Much of the analysis is done on bounded domains in Euclidean space, with a focus on analysis at the boundary. The book also includes a derivation of new Dirac integral equations for solving Maxwell scattering problems, which hold promise for future numerical applications. The last section presents down-to-earth proofs of index theorems for Dirac operators on compact manifolds, one of the most celebrated achievements of 20th-century mathematics. The book is primarily intended for graduate and PhD students of mathematics. It is also recommended for more advanced undergraduate students, as well as researchers in mathematics interested in an introduction to geometric analysis.

Advanced Color Image Processing and Analysis

Advanced Color Image Processing and Analysis

Author: Christine Fernandez-Maloigne

Publisher: Springer Science & Business Media

ISBN: 9781441961907

Category: Technology & Engineering

Page: 515

View: 997

This volume does much more than survey modern advanced color processing. Starting with a historical perspective on ways we have classified color, it sets out the latest numerical techniques for analyzing and processing colors, the leading edge in our search to accurately record and print what we see. The human eye perceives only a fraction of available light wavelengths, yet we live in a multicolor world of myriad shining hues. Colors rich in metaphorical associations make us “purple with rage” or “green with envy” and cause us to “see red.” Defining colors has been the work of centuries, culminating in today’s complex mathematical coding that nonetheless remains a work in progress: only recently have we possessed the computing capacity to process the algebraic matrices that reproduce color more accurately. With chapters on dihedral color and image spectrometers, this book provides technicians and researchers with the knowledge they need to grasp the intricacies of today’s color imaging.

Clifford Algebra to Geometric Calculus

Clifford Algebra to Geometric Calculus

Author: David Hestenes

Publisher: Springer Science & Business Media

ISBN: 9027725616

Category: Mathematics

Page: 340

View: 974

Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.

Signal Analysis and Prediction

Signal Analysis and Prediction

Author: Ales Prochazka

Publisher: Springer Science & Business Media

ISBN: 9781461217688

Category: Technology & Engineering

Page: 502

View: 815

Methods of signal analysis represent a broad research topic with applications in many disciplines, including engineering, technology, biomedicine, seismography, eco nometrics, and many others based upon the processing of observed variables. Even though these applications are widely different, the mathematical background be hind them is similar and includes the use of the discrete Fourier transform and z-transform for signal analysis, and both linear and non-linear methods for signal identification, modelling, prediction, segmentation, and classification. These meth ods are in many cases closely related to optimization problems, statistical methods, and artificial neural networks. This book incorporates a collection of research papers based upon selected contri butions presented at the First European Conference on Signal Analysis and Predic tion (ECSAP-97) in Prague, Czech Republic, held June 24-27, 1997 at the Strahov Monastery. Even though the Conference was intended as a European Conference, at first initiated by the European Association for Signal Processing (EURASIP), it was very gratifying that it also drew significant support from other important scientific societies, including the lEE, Signal Processing Society of IEEE, and the Acoustical Society of America. The organizing committee was pleased that the re sponse from the academic community to participate at this Conference was very large; 128 summaries written by 242 authors from 36 countries were received. In addition, the Conference qualified under the Continuing Professional Development Scheme to provide PD units for participants and contributors.

Clifford Algebra to Geometric Calculus

Clifford Algebra to Geometric Calculus

Author: D. Hestenes

Publisher: Springer Science & Business Media

ISBN: 9789400962927

Category: Science

Page: 314

View: 999

Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebm' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quatemions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.

Statistical and Geometrical Approaches to Visual Motion Analysis

Statistical and Geometrical Approaches to Visual Motion Analysis

Author: Daniel Cremers

Publisher: Springer Science & Business Media

ISBN: 9783642030611

Category: Computers

Page: 323

View: 313

This book constitutes the thoroughly refereed post-conference proceedings of the International Dagstuhl-Seminar on Statistical and Geometrical Approaches to Visual Motion Analysis, held in Dagstuhl Castle, Germany, in July 2008. The workshop focused on critical aspects of motion analysis, including motion segmentation and the modeling of motion patterns. The aim was to gather researchers who are experts in the different motion tasks and in the different techniques used; also involved were experts in the study of human and primate vision. The 15 revised full papers presented were carefully reviewed and selected from or initiated by the lectures given at the workshop. The papers are organized in topical sections on optical flow and extensions, human motion modeling, biological and statistical approaches, alternative approaches to motion analysis.

Geometric Algebra with Applications in Engineering

Geometric Algebra with Applications in Engineering

Author: Christian Perwass

Publisher: Springer Science & Business Media

ISBN: 9783540890683

Category: Computers

Page: 386

View: 691

The application of geometric algebra to the engineering sciences is a young, active subject of research. The promise of this field is that the mathematical structure of geometric algebra together with its descriptive power will result in intuitive and more robust algorithms. This book examines all aspects essential for a successful application of geometric algebra: the theoretical foundations, the representation of geometric constraints, and the numerical estimation from uncertain data. Formally, the book consists of two parts: theoretical foundations and applications. The first part includes chapters on random variables in geometric algebra, linear estimation methods that incorporate the uncertainty of algebraic elements, and the representation of geometry in Euclidean, projective, conformal and conic space. The second part is dedicated to applications of geometric algebra, which include uncertain geometry and transformations, a generalized camera model, and pose estimation. Graduate students, scientists, researchers and practitioners will benefit from this book. The examples given in the text are mostly recent research results, so practitioners can see how to apply geometric algebra to real tasks, while researchers note starting points for future investigations. Students will profit from the detailed introduction to geometric algebra, while the text is supported by the author's visualization software, CLUCalc, freely available online, and a website that includes downloadable exercises, slides and tutorials.

Progress in Pattern Recognition, Image Analysis and Applications

Progress in Pattern Recognition, Image Analysis and Applications

Author: Alberto Sanfeliu

Publisher: Springer Science & Business Media

ISBN: 9783540235279

Category: Computers

Page: 720

View: 949

First of all, we want to congratulate two new research communities from M- ico and Brazil that have recently joined the Iberoamerican community and the International Association for Pattern Recognition. We believe that the series of congresses that started as the “Taller Iberoamericano de Reconocimiento de Patrones (TIARP)”, and later became the “Iberoamerican Congress on Pattern Recognition (CIARP)”, has contributed to these groupconsolidatione?orts. We hope that in the near future all the Iberoamerican countries will have their own groups and associations to promote our areas of interest; and that these congresses will serve as the forum for scienti?c research exchange, sharing of - pertise and new knowledge, and establishing contacts that improve cooperation between research groups in pattern recognition and related areas. CIARP 2004 (9th Iberoamerican Congress on Pattern Recognition) was the ninthinaseriesofpioneeringcongressesonpatternrecognitionintheIberoam- ican community. As in the previous year, CIARP 2004 also included worldwide participation. It took place in Puebla, Mexico. The aim of the congress was to promote and disseminate ongoing research and mathematical methods for pattern recognition, image analysis, and applications in such diverse areas as computer vision, robotics, industry, health, entertainment, space exploration, telecommunications, data mining, document analysis,and natural languagep- cessing and recognition, to name a few.

Quaternion and Clifford Fourier Transforms

Quaternion and Clifford Fourier Transforms

Author: Eckhard Hitzer

Publisher: CRC Press

ISBN: 9781000429343

Category: Mathematics

Page: 474

View: 148

Quaternion and Clifford Fourier Transforms describes the development of quaternion and Clifford Fourier transforms in Clifford (geometric) algebra over the last 30 years. It is the first comprehensive, self-contained book covering this vibrant new area of pure and applied mathematics in depth. The book begins with a historic overview, followed by chapters on Clifford and quaternion algebra and geometric (vector) differential calculus (part of Clifford analysis). The core of the book consists of one chapter on quaternion Fourier transforms and one on Clifford Fourier transforms. These core chapters and their sections on more special topics are reasonably self-contained, so that readers already somewhat familiar with quaternions and Clifford algebra will hopefully be able to begin reading directly in the chapter and section of their particular interest, without frequently needing to skip back and forth. The topics covered are of fundamental interest to pure and applied mathematicians, physicists, and engineers (signal and color image processing, electrical engineering, computer science, computer graphics, artificial intelligence, geographic information science, aero-space engineering, navigation, etc.). Features Intuitive real geometric approach to higher-dimensional Fourier transformations A comprehensive reference, suitable for graduate students and researchers Includes detailed definitions, properties, and many full step-by-step proofs Many figures and tables, a comprehensive biography, and a detailed index make it easy to locate information

Wavelet Analysis and Applications

Wavelet Analysis and Applications

Author: Tao Qian

Publisher: Springer Science & Business Media

ISBN: 9783764377786

Category: Mathematics

Page: 574

View: 159

This volume reflects the latest developments in the area of wavelet analysis and its applications. Since the cornerstone lecture of Yves Meyer presented at the ICM 1990 in Kyoto, to some extent, wavelet analysis has often been said to be mainly an applied area. However, a significant percentage of contributions now are connected to theoretical mathematical areas, and the concept of wavelets continuously stretches across various disciplines of mathematics. Key topics: Approximation and Fourier Analysis Construction of Wavelets and Frame Theory Fractal and Multifractal Theory Wavelets in Numerical Analysis Time-Frequency Analysis Adaptive Representation of Nonlinear and Non-stationary Signals Applications, particularly in image processing Through the broad spectrum, ranging from pure and applied mathematics to real applications, the book will be most useful for researchers, engineers and developers alike.

Geometric Computing for Perception Action Systems

Geometric Computing for Perception Action Systems

Author: Eduardo Bayro Corrochano

Publisher: Springer Science & Business Media

ISBN: 9781461301776

Category: Computers

Page: 235

View: 670

After an introduction to geometric algebra, and the necessary math concepts that are needed, the book examines a variety of applications in the field of cognitive systems using geometric algebra as the mathematical system. There is strong evidence that geobetric albegra can be used to carry out efficient computations at all levels in the cognitive system. Geometric algebra reduces the complexity of algebraic expressions and as a result, it improves algorithms both in speed and accuracy. The book is addressed to a broad audience of computer scientists, cyberneticists, and engineers. It contains computer programs to clarify and demonstrate the importance of geometric algebra in cognitive systems.

An Introduction to Vectors, Vector Operators and Vector Analysis

An Introduction to Vectors, Vector Operators and Vector Analysis

Author: Pramod S. Joag

Publisher: Cambridge University Press

ISBN: 9781316870471

Category: Science

Page: 548

View: 462

Ideal for undergraduate and graduate students of science and engineering, this book covers fundamental concepts of vectors and their applications in a single volume. The first unit deals with basic formulation, both conceptual and theoretical. It discusses applications of algebraic operations, Levi-Civita notation, and curvilinear coordinate systems like spherical polar and parabolic systems and structures, and analytical geometry of curves and surfaces. The second unit delves into the algebra of operators and their types and also explains the equivalence between the algebra of vector operators and the algebra of matrices. Formulation of eigen vectors and eigen values of a linear vector operator are elaborated using vector algebra. The third unit deals with vector analysis, discussing vector valued functions of a scalar variable and functions of vector argument (both scalar valued and vector valued), thus covering both the scalar vector fields and vector integration.