Plasma Processing of Polymers

Plasma Processing of Polymers

Author: Ricardo d'Agostino

Publisher: Springer Science & Business Media

ISBN: 0792348591

Category: Technology & Engineering

Page: 532

View: 913

Proceedings of the NATO Advanced Study Institute on Plasma Treatments and Deposition of Polymers, Acquafredda di Maratea, Italy, May 19-June 2, 1996

Plasma Processes and Polymers

Plasma Processes and Polymers

Author: Riccardo d'Agostino

Publisher: John Wiley & Sons

ISBN: 9783527605576

Category: Science

Page: 545

View: 668

This volume compiles essential contributions to the most innovative fields of Plasma Processes and Polymers. High-quality contributions cover the fields of plasma deposition, plasma treatment of polymers and other organic compounds, plasma processes under partial vacuum and at atmospheric pressure, biomedical, textile, automotive, and optical applications as well as surface treatment of bulk materials, clusters, particles and powders. This unique collection of refereed papers is based on the best contributions presented at the 16th International Symposium on Plasma Chemistry in Taormina, Italy (ISPC-16, June 2003). A high class reference of relevance to a large audience in plasma community as well as in the area of its industrial applications.

Nonthermal Plasmas for Materials Processing

Nonthermal Plasmas for Materials Processing

Author: Jörg Florian Friedrich

Publisher: Wiley-Scrivener

ISBN: 1119363586

Category: Science

Page: 704

View: 827

NONTHERMAL PLASMAS FOR MATERIALS PROCESSING This unique book covers the physical and chemical aspects of plasma chemistry with polymers and gives new insights into the interaction of physics and chemistry of nonthermal plasmas and their applications in materials science for physicists and chemists. The properties and characteristics of plasmas, elementary (collision) processes in the gas phase, plasma surface interactions, gas discharge plasmas and technical plasma sources, atmospheric plasmas, plasma diagnostics, polymers and plasmas, plasma polymerization, post-plasma processes, plasma, and wet-chemical processing, plasma-induced generation of functional groups, and the chemical reactions on these groups along with a few exemplary applications are discussed in this comprehensive but condensed state-of-the-art book on plasma chemistry and its dependence on plasma physics. While plasma physics, plasma chemistry, and polymer science are often handled separately, the aim of the authors is to harmoniously join the physics and chemistry of low-pressure and atmospheric-pressure plasmas with polymer surface chemistry and polymerization and to compare such chemistry with classic chemistry. Readers will find in these chapters Interaction of plasma physics and chemistry in plasmas and at the surface of polymers; Explanation and interpretation of physical and chemical mechanisms on plasma polymerization and polymer surface modification; Introduction of modern techniques in plasma diagnostics, surface analysis of solids, and special behavior of polymers on exposure to plasmas; Discussion of the conflict of energy-rich plasma species with permanent energy supply and the much lower binding energies in polymers and alternatives to avoid random polymer decomposition Technical applications such as adhesion, cleaning, wettability, textile modification, coatings, films, etc. New perspectives are explained about how to use selective and mild processes to allow post-plasma chemistry on non-degraded polymer surfaces. Audience Physicists, polymer chemists, materials scientists, industrial engineers in biomedicine, coatings, printing, etc.

Plasma Deposition, Treatment, and Etching of Polymers

Plasma Deposition, Treatment, and Etching of Polymers

Author: Riccardo d'Agostino

Publisher: Elsevier

ISBN: 9780323139083

Category: Technology & Engineering

Page: 544

View: 913

Plasma Deposition, Treatment, and Etching of Polymers takes a broad look at the basic principles, the chemical processes, and the diagnostic procedures in the interaction of plasmas with polymer surfaces. This recent technology has yielded a large class of new materials offering many applications, including their use as coatings for chemical fibers and films. Additional applications include uses for the passivation of metals, the surface hardening of tools, increased biocompatibility of biomedical materials, chemical and physical sensors, and a variety of micro- and optoelectronic devices. Appeals to a broad range of industries from microelectronics to space technology Discusses a wide array of new uses for plasma polymers Provides a tutorial introduction to the field Surveys various classes of plasma polymers, their chemical and morphological properties, effects of plasma process parameters on the growth and structure of these synthetic materials, and techniques for characterization Interests scientists, engineers, and students alike

Plasma Processing of Nanomaterials

Plasma Processing of Nanomaterials

Author: R. Mohan Sankaran

Publisher: CRC Press

ISBN: 9781439866771

Category: Science

Page: 432

View: 335

We are at a critical evolutionary juncture in the research and development of low-temperature plasmas, which have become essential to synthesizing and processing vital nanoscale materials. More and more industries are increasingly dependent on plasma technology to develop integrated small-scale devices, but physical limits to growth, and other challenges, threaten progress. Plasma Processing of Nanomaterials is an in-depth guide to the art and science of plasma-based chemical processes used to synthesize, process, and modify various classes of nanoscale materials such as nanoparticles, carbon nanotubes, and semiconductor nanowires. Plasma technology enables a wide range of academic and industrial applications in fields including electronics, textiles, automotives, aerospace, and biomedical. A prime example is the semiconductor industry, in which engineers revolutionized microelectronics by using plasmas to deposit and etch thin films and fabricate integrated circuits. An overview of progress and future potential in plasma processing, this reference illustrates key experimental and theoretical aspects by presenting practical examples of: Nanoscale etching/deposition of thin films Catalytic growth of carbon nanotubes and semiconductor nanowires Silicon nanoparticle synthesis Functionalization of carbon nanotubes Self-organized nanostructures Significant advances are expected in nanoelectronics, photovoltaics, and other emerging fields as plasma technology is further optimized to improve the implementation of nanomaterials with well-defined size, shape, and composition. Moving away from the usual focus on wet techniques embraced in chemistry and physics, the author sheds light on pivotal breakthroughs being made by the smaller plasma community. Written for a diverse audience working in fields ranging from nanoelectronics and energy sensors to catalysis and nanomedicine, this resource will help readers improve development and application of nanomaterials in their own work. About the Author: R. Mohan Sankaran received the American Vacuum Society’s 2011 Peter Mark Memorial Award for his outstanding contributions to tandem plasma synthesis.

Issues in Nuclear and Plasma Science and Technology: 2013 Edition

Issues in Nuclear and Plasma Science and Technology: 2013 Edition

Author:

Publisher: ScholarlyEditions

ISBN: 9781490107806

Category: Science

Page: 745

View: 485

Issues in Nuclear and Plasma Science and Technology: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Plasma Science. The editors have built Issues in Nuclear and Plasma Science and Technology: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Plasma Science in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Nuclear and Plasma Science and Technology: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Low Temperature Plasma Technology

Low Temperature Plasma Technology

Author: Paul K. Chu

Publisher: CRC Press

ISBN: 9781466509900

Category: Science

Page: 493

View: 746

Written by a team of pioneering scientists from around the world, Low Temperature Plasma Technology: Methods and Applications brings together recent technological advances and research in the rapidly growing field of low temperature plasmas. The book provides a comprehensive overview of related phenomena such as plasma bullets, plasma penetration into biofilms, discharge-mode transition of atmospheric pressure plasmas, and self-organization of microdischarges. It describes relevant technology and diagnostics, including nanosecond pulsed discharge, cavity ringdown spectroscopy, and laser-induced fluorescence measurement, and explores the increasing research on atmospheric pressure nonequilibrium plasma jets. The authors also discuss how low temperature plasmas are used in the synthesis of nanomaterials, environmental applications, the treatment of biomaterials, and plasma medicine. This book provides a balanced and thorough treatment of the core principles, novel technology and diagnostics, and state-of-the-art applications of low temperature plasmas. It is accessible to scientists and graduate students in low-pressure plasma physics, nanotechnology, plasma medicine, and materials science. The book is also suitable as an advanced reference for senior undergraduate students.

Biomedical Engineering

Biomedical Engineering

Author: Reza Fazel-Rezai

Publisher: BoD – Books on Demand

ISBN: 9789533073095

Category: Medical

Page: 388

View: 299

In all different areas in biomedical engineering, the ultimate objectives in research and education are to improve the quality life, reduce the impact of disease on the everyday life of individuals, and provide an appropriate infrastructure to promote and enhance the interaction of biomedical engineering researchers. This book is prepared in two volumes to introduce recent advances in different areas of biomedical engineering such as biomaterials, cellular engineering, biomedical devices, nanotechnology, and biomechanics. It is hoped that both of the volumes will bring more awareness about the biomedical engineering field and help in completing or establishing new research areas in biomedical engineering.

Printing on Polymers

Printing on Polymers

Author: Joanna Izdebska

Publisher: William Andrew

ISBN: 9780323375009

Category: Technology & Engineering

Page: 444

View: 257

Printing on Polymers: Fundamentals and Applications is the first authoritative reference covering the most important developments in the field of printing on polymers, their composites, nanocomposites, and gels. The book examines the current state-of-the-art and new challenges in the formulation of inks, surface activation of polymer surfaces, and various methods of printing. The book equips engineers and materials scientists with the tools required to select the correct method, assess the quality of the result, reduce costs, and keep up-to-date with regulations and environmental concerns. Choosing the correct way of decorating a particular polymer is an important part of the production process. Although printing on polymeric substrates can have desired positive effects, there can be problems associated with various decorating techniques. Physical, chemical, and thermal interactions can cause problems, such as cracking, peeling, or dulling. Safety, environmental sustainability, and cost are also significant factors which need to be considered. With contributions from leading researchers from industry, academia, and private research institutions, this book serves as a one-stop reference for this field—from print ink manufacture to polymer surface modification and characterization; and from printing methods to applications and end-of-life issues. Enables engineers to select the correct decoration method for each material and application, assess print quality, and reduce costs Increases familiarity with the terminology, tests, processes, techniques, and regulations of printing on plastic, which reduces the risk of adverse reactions, such as cracking, peeling, or dulling of the print Addresses the issues of environmental impact and cost when printing on polymeric substrates Features contributions from leading researchers from industry, academia, and private research institutions

Textile Dyeing

Textile Dyeing

Author: Peter Hauser

Publisher: BoD – Books on Demand

ISBN: 9789533075655

Category: Technology & Engineering

Page: 404

View: 222

The coloration of fibers and fabrics through dyeing is an integral part of textile manufacturing. This book discusses in detail several emerging topics on textile dyeing. "Textile Dyeing" will serve as an excellent addition to the libraries of both the novice and expert.

Sterilisation of Biomaterials and Medical Devices

Sterilisation of Biomaterials and Medical Devices

Author: Sophie Lerouge

Publisher: Elsevier

ISBN: 9780857096265

Category: Technology & Engineering

Page: 352

View: 292

The effective sterilisation of any material or device to be implanted in or used in close contact with the human body is essential for the elimination of harmful agents such as bacteria. Sterilisation of biomaterials and medical devices reviews established and commonly used technologies alongside new and emerging processes. Following an introduction to the key concepts and challenges involved in sterilisation, the sterilisation of biomaterials and medical devices using steam and dry heat, ionising radiation and ethylene oxide is reviewed. A range of non-traditional sterilisation techniques, such as hydrogen peroxide gas plasma, ozone and steam formaldehyde, is then discussed together with research in sterilisation and decontamination of surfaces by plasma discharges. Sterilisation techniques for polymers, drug-device products and tissue allografts are then reviewed, together with antimicrobial coatings for ‘self-sterilisation’ and the challenge presented by prions and endotoxins in the sterilisation of reusable medical devices. The book concludes with a discussion of future trends in the sterilisation of biomaterials and medical devices. With its distinguished editors and expert team of international contributors, Sterilisation of biomaterials and medical devices is an essential reference for all materials scientists, engineers and researchers within the medical devices industry. It also provides a thorough overview for academics and clinicians working in this area. Reviews established and commonly used technologies alongside new and emerging processes Introduces and reviews the key concepts and challenges involved in sterilisation Discusses future trends in the sterilisation of biomaterials and medical devices