Theory of Group Representations and Applications

Theory of Group Representations and Applications

Author: A Barut

Publisher: World Scientific Publishing Company

ISBN: 9789813103870

Category: Mathematics

Page: 740

View: 189

The material collected in this book originated from lectures given by authors over many years in Warsaw, Trieste, Schladming, Istanbul, Goteborg and Boulder. There is no other comparable book on group representations, neither in mathematical nor in physical literature and it is hoped that this book will prove to be useful in many areas of research. It is highly recommended as a textbook for an advanced course in mathematical physics on Lie algebras, Lie groups and their representations. Request Inspection Copy

Applications of Finite Groups

Applications of Finite Groups

Author: J. S. Lomont

Publisher: Academic Press

ISBN: 9781483268965

Category: Mathematics

Page: 358

View: 923

Applications of Finite Groups focuses on the applications of finite groups to problems of physics, including representation theory, crystals, wave equations, and nuclear and molecular structures. The book first elaborates on matrices, groups, and representations. Topics include abstract properties, applications, matrix groups, key theorem of representation theory, properties of character tables, simply reducible groups, tensors and invariants, and representations generated by functions. The text then examines applications and subgroups and representations, as well as subduced and induced representations, fermion annihilation and creation operators, crystallographic point groups, proportionality tensors in crystals, and nonrelativistic wave equations. The publication takes a look at space group representations and energy bands, symmetric groups, and applications. Topics include molecular and nuclear structures, multiplet splitting in crystalline electric fields, construction of irreducible representations of the symmetric groups, and reality of representations. The manuscript is a dependable source of data for physicists and researchers interested in the applications of finite groups.

Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications

Theory Of Groups And Symmetries: Representations Of Groups And Lie Algebras, Applications

Author: Valery A Rubakov

Publisher: World Scientific

ISBN: 9789811217425

Category: Science

Page: 616

View: 460

This book is a sequel to the book by the same authors entitled Theory of Groups and Symmetries: Finite Groups, Lie Groups, and Lie Algebras.The presentation begins with the Dirac notation, which is illustrated by boson and fermion oscillator algebras and also Grassmann algebra. Then detailed account of finite-dimensional representations of groups SL(2, C) and SU(2) and their Lie algebras is presented. The general theory of finite-dimensional irreducible representations of simple Lie algebras based on the construction of highest weight representations is given. The classification of all finite-dimensional irreducible representations of the Lie algebras of the classical series sℓ(n, C), so(n, C) and sp(2r, C) is exposed.Finite-dimensional irreducible representations of linear groups SL(N, C) and their compact forms SU(N) are constructed on the basis of the Schur-Weyl duality. A special role here is played by the theory of representations of the symmetric group algebra C[Sr] (Schur-Frobenius theory, Okounkov-Vershik approach), based on combinatorics of Young diagrams and Young tableaux. Similar construction is given for pseudo-orthogonal groups O(p, q) and SO(p, q), including Lorentz groups O(1, N-1) and SO(1, N-1), and their Lie algebras, as well as symplectic groups Sp(p, q). The representation theory of Brauer algebra (centralizer algebra of SO(p, q) and Sp(p, q) groups in tensor representations) is discussed.Finally, the covering groups Spin(p, q) for pseudo-orthogonal groups SO↑(p, q) are studied. For this purpose, Clifford algebras in spaces Rp, q are introduced and representations of these algebras are discussed.

Theory of Group Representations and Fourier Analysis

Theory of Group Representations and Fourier Analysis

Author: F. Gherardelli

Publisher: Springer Science & Business Media

ISBN: 9783642110122

Category: Mathematics

Page: 330

View: 422

A. Figá Talamanca: Random Fourier series on compact groups.- S. Helgason: Representations of semisimple Lie groups.- H. Jacquet: Représentations des groupes linéaires p-adiques.- G.W. Mackey: Infinite-dimensional group representations and their applications.

Clifford Theory for Group Representations

Clifford Theory for Group Representations

Author: G. Karpilovsky

Publisher: Elsevier

ISBN: 0080872670

Category: Mathematics

Page: 363

View: 597

Let N be a normal subgroup of a finite group G and let F be a field. An important method for constructing irreducible FG-modules consists of the application (perhaps repeated) of three basic operations: (i) restriction to FN. (ii) extension from FN. (iii) induction from FN. This is the `Clifford Theory' developed by Clifford in 1937. In the past twenty years, the theory has enjoyed a period of vigorous development. The foundations have been strengthened and reorganized from new points of view, especially from the viewpoint of graded rings and crossed products. The purpose of this monograph is to tie together various threads of the development in order to give a comprehensive picture of the current state of the subject. It is assumed that the reader has had the equivalent of a standard first-year graduate algebra course, i.e. familiarity with basic ring-theoretic, number-theoretic and group-theoretic concepts, and an understanding of elementary properties of modules, tensor products and fields.

Problems in the General Theory of Relativity and Theory of Group Representations

Problems in the General Theory of Relativity and Theory of Group Representations

Author: N. G. Basov

Publisher: Springer Science & Business Media

ISBN: 9781468406764

Category: Science

Page: 185

View: 597

This collection contains survey articles dealing with the following topics: The Mach principle and its role in the general theory of relativity, the modern conception of the vacuum, new methods in the theory of Lie group representations, the coherent state method and its application to physical problems, and the Newman-Penrose method and its application to problems in general relativity theory.

The Application of Group Theory in Physics

The Application of Group Theory in Physics

Author: G.Ya. Lyubarskii

Publisher: Elsevier

ISBN: 9781483225982

Category: Mathematics

Page: 392

View: 475

The Application of Group Theory in Physics is a 17-chapter text based on a course of lectures concerning the principles, concepts, and application of group theory in physics, given at the Gorki University in Kharkov. This text presents first the parts of the theory of representations of finite and continuous groups that are most important in application. Considerable chapters cover the groups of theory of interest in theoretical physics and demonstrate the principles according to which the abstract concepts and the theorems of representation theory are applied in theoretical physics. The remaining chapters provide representations of the rotation group and the Lorentz group. The closing part of this work contains tables of the detailed description of the 230 space groups and for the characters of certain groups. This book is intended primarily for physicists specializing in theoretical physics

Lectures of Sidney Coleman on Quantum Field Theory

Lectures of Sidney Coleman on Quantum Field Theory

Author: Bryan Gin-ge Chen

Publisher: World Scientific Publishing

ISBN: 9789814635523

Category: Science

Page: 1196

View: 925

'Sidney Coleman was the master teacher of quantum field theory. All of us who knew him became his students and disciples. Sidney’s legendary course remains fresh and bracing, because he chose his topics with a sure feel for the essential, and treated them with elegant economy.' Frank WilczekNobel Laureate in Physics 2004 Sidney Coleman was a physicist's physicist. He is largely unknown outside of the theoretical physics community, and known only by reputation to the younger generation. He was an unusually effective teacher, famed for his wit, his insight and his encyclopedic knowledge of the field to which he made many important contributions. There are many first-rate quantum field theory books (the venerable Bjorken and Drell, the more modern Itzykson and Zuber, the now-standard Peskin and Schroeder, and the recent Zee), but the immediacy of Prof. Coleman's approach and his ability to present an argument simply without sacrificing rigor makes his book easy to read and ideal for the student. Part of the motivation in producing this book is to pass on the work of this outstanding physicist to later generations, a record of his teaching that he was too busy to leave himself.

Group Theory in Physics

Group Theory in Physics

Author: Wu-Ki Tung

Publisher: World Scientific Publishing Company

ISBN: 9789813104044

Category: Representations of groups

Page: 336

View: 736

An introductory text book for graduates and advanced undergraduates on group representation theory. It emphasizes group theory's role as the mathematical framework for describing symmetry properties of classical and quantum mechanical systems. Familiarity with basic group concepts and techniques is invaluable in the education of a modern-day physicist. This book emphasizes general features and methods which demonstrate the power of the group-theoretical approach in exposing the systematics of physical systems with associated symmetry. Particular attention is given to pedagogy. In developing the theory, clarity in presenting the main ideas and consequences is given the same priority as comprehensiveness and strict rigor. To preserve the integrity of the mathematics, enough technical information is included in the appendices to make the book almost self-contained. A set of problems and solutions has been published in a separate booklet. Request Inspection Copy