Universal vehicular communication promises many improvements in terms of ac- dent avoidance and mitigation, better utilization of roads and resources such as time and fuel, and new opportunities for infotainment applications. However, before widespread acceptance, vehicular communication must meet challenges comparable to the trouble and disbelief that accompanied the introduction of traf c lights back then. The rst traf c light was installed in 1868 in London to signal railway, but only later, in 1912, was invented the rst red-green electric traf c light. And roughly 50 years after the rst traf c light, in 1920, the rst four-way traf c signal comparable to our today’s traf c lights was introduced. The introduction of traf c signals was necessary after automobiles soon became prevalent once the rst car in history, actually a wooden motorcycle, was constructed in 1885. Soon, the scene became complicated, requiring the introduction of the “right-of-way” philosophy and later on the very rst traf c light. In the same way the traf c light was a necessary mean to regulate the beginning of the automotive life and to protect drivers, passengers, as well as pedestrians and other inhabitants of the road infrastructure, vehicular communication is necessary to accommodate the further growth of traf c volume and to signi cantly reduce the number of accidents.
In spite of their importance and potential societal impact, there is currently no comprehensive source of information about vehicular ad hoc networks (VANETs). Cohesively integrating the state of the art in this emerging field, Vehicular Networks: From Theory to Practice elucidates many issues involved in vehicular networking, including traffic engineering, human factors studies, and novel computer science research. Divided into six broad sections, the book begins with an overview of traffic engineering issues, such as traffic monitoring and traffic flow modeling. It then introduces governmental and industrial efforts in the United States and Europe to set standards and perform field tests on the feasibility of vehicular networks. After highlighting innovative applications enabled by vehicular networks, the book discusses several networking-related issues, including routing and localization. The following section focuses on simulation, which is currently the primary method for evaluating vehicular networking systems. The final part explores the extent and impact of driver distraction with in-vehicle displays. Encompassing both introductory and advanced concepts, this guide covers the various areas that impact the design of applications for vehicular networks. It details key research challenges, offers guidance on developing future standards, and supplies valuable information on existing experimental studies.
Attila Jaeger develops an application which notifies a vehicle’s driver of upcoming road weather dangers. This application maps the information evaluated by in-vehicle sensors in order to draw conclusions on the current weather condition. Comprehensive data basis is gained by sharing information with other vehicles using Car-to-X communication. In order to prove usability of the presented approaches, the developed application and selected concepts are implemented and deployed within the context of large scale Car-to-X field operational trials simTD and DRIVE C2X. Car-to-X communication is considered as the next major step towards a significant increase in road safety and traffic efficiency.
Pedestrians and bicyclists, also known as Vulnerable Road Users (VRUs), are one of the weakest components of Intelligent Transportation Systems from a safety perspective. However, with the advent of new communication technologies, VRU protection may no longer be dependent solely on the vehicle’s safety systems. VRUs may share their location information with the surrounding vehicles to increase awareness of their presence. Such communication among vehicles and VRUs is referred to as Vehicle-to-Pedestrian (V2P) communication. Although the V2P system may be built upon the existing Vehicle-to-Vehicle communication system, it has its own set of challenges, such as different VRU mobility characteristics, energy-constrained devices, and VRU density. Therefore, there needs to be a V2P system model which is adapted to the VRU characteristics. This dissertation tackles this challenge by proposing a framework that enables scalability, reliability, and energy efficiency for VRU communication.
This volume presents the contributions of the third International Conference on Advancements of Medicine and Health Care through Technology (Meditech 2014), held in in Cluj-Napoka, Romania. The papers of this Proceedings volume present new developments in - Health Care Technology, - Medical Devices, Measurement and Instrumentation, - Medical Imaging, Image and Signal Processing, - Modeling and Simulation, - Molecular Bioengineering, - Biomechanics.
Vehicular Communications and Networks: Architectures, Protocols, Operation and Deployment discusses VANETs (Vehicular Ad-hoc Networks) or VCS (Vehicular Communication Systems), which can improve safety, decrease fuel consumption, and increase the capacity of existing roadways and which is critical for the Intelligent Transportation System (ITS) industry. Part one covers architectures for VCS, part two describes the physical layer, antenna technologies and propagation models, part three explores protocols, algorithms, routing and information dissemination, and part four looks at the operation and deployment of vehicular communications and networks. Comprehensive coverage of the fundamental principles behind Vehicular Ad-hoc Networks (VANETS) and the rapidly growing need for their further development Thorough overview of the design and development of key technologies and devices Explores the practical application of this technology by outlining a number of case studies, testbeds and simulations employing vehicular communications and networks
This book constitutes the joint refereed proceedings of the Third International Workshop on Communication Technologies for Vehicles, Nets4Cars 2011and the First International Workshop on Communication Technologies for Vehicles in the Railway Transportation, Nets4Trains 2011, held in Oberpfaffenhofen, Germany, in March 2011. The 7 full papers of the rail track and 12 full papers of the road track presented together with a keynote were carefully reviewed and selected from 13 and 21 submissions respectively. They provide an overview over the latest technologies and research in the field of intra- and inter-vehicle communication and present original research results in areas relating to communication protocols and standards, mobility and traffic models, experimental and field operational testing, and performance analysis.
David Förster examines privacy protection for vehicular communication under the assumption of an attacker that is able to compromise back-end systems – motivated by the large number of recent security incidents and revelations about mass surveillance. The author aims for verifiable privacy protection enforced through cryptographic and technical means, which safeguards user data even if back-end systems are not fully trusted. Förster applies advanced cryptographic concepts, such as anonymous credentials, and introduces a novel decentralized secret sharing algorithm to fulfill complex and seemingly contradicting requirements in several vehicle-to-x application scenarios. Many of the concepts and results can also be applied to other flavors of internet of things systems.
"This book explores different models for inter-vehicular communication, in which vehicles are equipped with on-board computers that function as nodes in a wireless network"--Provided by publisher.
This book constitutes the proceedings of the 6th International Workshop on Communication Technologies for Vehicles, Nets4Cars/Nets4Trains/Nets4Aircraft 2014, held in Offenburg, Germany in May 2014. The 10 papers presented in this volume were carefully reviewed and selected from 15 submissions. The book also contains 4 invited papers. The contributions are organized in topical sections named: automotive issues, car-to-car, aviation issues, in-car, and infrastructures.
This book presents high-quality peer-reviewed papers from the International Conference on Advanced Communication and Computational Technology (ICACCT) 2019 held at the National Institute of Technology, Kurukshetra, India. The contents are broadly divided into four parts: (i) Advanced Computing, (ii) Communication and Networking, (iii) VLSI and Embedded Systems, and (iv) Optimization Techniques.The major focus is on emerging computing technologies and their applications in the domain of communication and networking. The book will prove useful for engineers and researchers working on physical, data link and transport layers of communication protocols. Also, this will be useful for industry professionals interested in manufacturing of communication devices, modems, routers etc. with enhanced computational and data handling capacities.