A Radical Approach to Real Analysis

A Radical Approach to Real Analysis

Author: David Bressoud

Publisher: American Mathematical Society

ISBN: 9781470469047

Category: Mathematics

Page: 339

View: 179

In this second edition of the MAA classic, exploration continues to be an essential component. More than 60 new exercises have been added, and the chapters on Infinite Summations, Differentiability and Continuity, and Convergence of Infinite Series have been reorganized to make it easier to identify the key ideas. A Radical Approach to Real Analysis is an introduction to real analysis, rooted in and informed by the historical issues that shaped its development. It can be used as a textbook, as a resource for the instructor who prefers to teach a traditional course, or as a resource for the student who has been through a traditional course yet still does not understand what real analysis is about and why it was created. The book begins with Fourier's introduction of trigonometric series and the problems they created for the mathematicians of the early 19th century. It follows Cauchy's attempts to establish a firm foundation for calculus and considers his failures as well as his successes. It culminates with Dirichlet's proof of the validity of the Fourier series expansion and explores some of the counterintuitive results Riemann and Weierstrass were led to as a result of Dirichlet's proof.

Randomness and Recurrence in Dynamical Systems: A Real Analysis Approach

Randomness and Recurrence in Dynamical Systems: A Real Analysis Approach

Author: Rodney Nillsen

Publisher: American Mathematical Soc.

ISBN: 9780883850435

Category: Mathematics

Page: 357

View: 769

Randomness and Recurrence in Dynamical Systems aims to bridge a gap between undergraduate teaching and the research level in mathematical analysis. It makes ideas on averaging, randomness, and recurrence, which traditionally require measure theory, accessible at the undergraduate and lower graduate level. The author develops new techniques of proof and adapts known proofs to make the material accessible to students with only a background in elementary real analysis. Over 60 figures are used to explain proofs, provide alternative viewpoints and elaborate on the main text. The book explains further developments in terms of measure theory. The results are presented in the context of dynamical systems, and the quantitative results are related to the underlying qualitative phenomena—chaos, randomness, recurrence and order. The final part of the book introduces and motivates measure theory and the notion of a measurable set, and describes the relationship of Birkhoff's Individual Ergodic Theorem to the preceding ideas. Developments in other dynamical systems are indicated, in particular Lévy's result on the frequency of occurence of a given digit in the partial fractions expansion of a number.

Introduction to Real Analysis

Introduction to Real Analysis

Author: William C. Bauldry

Publisher: John Wiley & Sons

ISBN: 9781118164433

Category: Mathematics

Page: 280

View: 130

An accessible introduction to real analysis and its connectionto elementary calculus Bridging the gap between the development and history of realanalysis, Introduction to Real Analysis: An EducationalApproach presents a comprehensive introduction to real analysiswhile also offering a survey of the field. With its balance ofhistorical background, key calculus methods, and hands-onapplications, this book provides readers with a solid foundationand fundamental understanding of real analysis. The book begins with an outline of basic calculus, including aclose examination of problems illustrating links and potentialdifficulties. Next, a fluid introduction to real analysis ispresented, guiding readers through the basic topology of realnumbers, limits, integration, and a series of functions in naturalprogression. The book moves on to analysis with more rigorousinvestigations, and the topology of the line is presented alongwith a discussion of limits and continuity that includes unusualexamples in order to direct readers' thinking beyond intuitivereasoning and on to more complex understanding. The dichotomy ofpointwise and uniform convergence is then addressed and is followedby differentiation and integration. Riemann-Stieltjes integrals andthe Lebesgue measure are also introduced to broaden the presentedperspective. The book concludes with a collection of advancedtopics that are connected to elementary calculus, such as modelingwith logistic functions, numerical quadrature, Fourier series, andspecial functions. Detailed appendices outline key definitions and theorems inelementary calculus and also present additional proofs, projects,and sets in real analysis. Each chapter references historicalsources on real analysis while also providing proof-orientedexercises and examples that facilitate the development ofcomputational skills. In addition, an extensive bibliographyprovides additional resources on the topic. Introduction to Real Analysis: An Educational Approach isan ideal book for upper- undergraduate and graduate-level realanalysis courses in the areas of mathematics and education. It isalso a valuable reference for educators in the field of appliedmathematics.

Spaces: An Introduction to Real Analysis

Spaces: An Introduction to Real Analysis

Author: Tom L. Lindstrøm

Publisher: American Mathematical Soc.

ISBN: 9781470440626

Category: Functional analysis

Page: 369

View: 483

Spaces is a modern introduction to real analysis at the advanced undergraduate level. It is forward-looking in the sense that it first and foremost aims to provide students with the concepts and techniques they need in order to follow more advanced courses in mathematical analysis and neighboring fields. The only prerequisites are a solid understanding of calculus and linear algebra. Two introductory chapters will help students with the transition from computation-based calculus to theory-based analysis. The main topics covered are metric spaces, spaces of continuous functions, normed spaces, differentiation in normed spaces, measure and integration theory, and Fourier series. Although some of the topics are more advanced than what is usually found in books of this level, care is taken to present the material in a way that is suitable for the intended audience: concepts are carefully introduced and motivated, and proofs are presented in full detail. Applications to differential equations and Fourier analysis are used to illustrate the power of the theory, and exercises of all levels from routine to real challenges help students develop their skills and understanding. The text has been tested in classes at the University of Oslo over a number of years.

Real Analysis: A Comprehensive Course in Analysis, Part 1

Real Analysis: A Comprehensive Course in Analysis, Part 1

Author: Barry Simon

Publisher: American Mathematical Soc.

ISBN: 9781470410995

Category: Mathematical analysis

Page: 789

View: 593

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.

An Invitation to Real Analysis

An Invitation to Real Analysis

Author: Luis F. Moreno

Publisher: The Mathematical Association of America

ISBN: 9781939512055

Category: Mathematics

Page: 681

View: 801

An Invitation to Real Analysis is written both as a stepping stone to higher calculus and analysis courses, and as foundation for deeper reasoning in applied mathematics. This book also provides a broader foundation in real analysis than is typical for future teachers of secondary mathematics. In connection with this, within the chapters, students are pointed to numerous articles from The College Mathematics Journal and The American Mathematical Monthly. These articles are inviting in their level of exposition and their wide-ranging content. Axioms are presented with an emphasis on the distinguishing characteristics that new ones bring, culminating with the axioms that define the reals. Set theory is another theme found in this book, beginning with what students are familiar with from basic calculus. This theme runs underneath the rigorous development of functions, sequences, and series, and then ends with a chapter on transfinite cardinal numbers and with chapters on basic point-set topology. Differentiation and integration are developed with the standard level of rigor, but always with the goal of forming a firm foundation for the student who desires to pursue deeper study. A historical theme interweaves throughout the book, with many quotes and accounts of interest to all readers. Over 600 exercises and dozens of figures help the learning process. Several topics (continued fractions, for example), are included in the appendices as enrichment material. An annotated bibliography is included.

Real Analysis for the Undergraduate

Real Analysis for the Undergraduate

Author: Matthew A. Pons

Publisher: Springer Science & Business Media

ISBN: 9781461496380

Category: Mathematics

Page: 409

View: 344

This undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author’s engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum.

Elements of Real Analysis

Elements of Real Analysis

Author: Charles Denlinger

Publisher: Jones & Bartlett Learning

ISBN: 9780763779474

Category: Mathematics

Page: 769

View: 794

A student-friendly guide to learning all the important ideas of elementary real analysis, this resource is based on the author's many years of experience teaching the subject to typical undergraduate mathematics majors.