Guiding the reader through all the stages that lead to the formation of a star such as our Sun, this advanced textbook provides students with a complete overview of star formation. It examines the underlying physical processes that govern the evolution from a molecular cloud core to a main-sequence star, and focuses on the formation of solar-mass stars. Each chapter combines theory and observation, helping readers to connect with and understand the theory behind star formation. Beginning with an explanation of the interstellar medium and molecular clouds as sites of star formation, subsequent chapters address the building of typical stars and the formation of high-mass stars, concluding with a discussion of the by-products and consequences of star formation. This is a unique, self-contained text with sufficient background information for self-study, and is ideal for students and professional researchers alike.
Guiding the reader through all the stages that lead to the formation of a star such as our Sun, this advanced textbook provides students with a complete overview of star formation. It examines the underlying physical processes that govern the evolution from a molecular cloud core to a main-sequence star, and focuses on the formation of solar-mass stars. Each chapter combines theory and observation, helping readers to connect with and understand the theory behind star formation. Beginning with an explanation of the interstellar medium and molecular clouds as sites of star formation, subsequent chapters address the building of typical stars and the formation of high-mass stars, concluding with a discussion of the by-products and consequences of star formation. This is a unique, self-contained text with sufficient background information for self-study, and is ideal for students and professional researchers alike.
The book begins with a historical introduction, "Star Formation: The Early History", that presents new material of interest for students and historians of science. This is followed by two long articles on "Pre-Main-Sequence Evolution of Stars and Young Clusters" and "Observations of Young Stellar Objects". These articles on the fascinating problem of star formation from interstellar matter give a thorough overview of present-day theories and observations. The articles contain material so far unpublished in the astronomical literature. The book addresses graduate students and can be used as a textbook for advanced courses in stellar astrophysics.
This volume contains the written versions of the lectures given at the 26th course of the renowned Saas-Fee series. The book represents a comprehensive and up-to-date review of the field of galaxy interaction. Nowadays, galaxies are no longer seen as immutable objects: they evolve, interact, merge, blaze, and reshape. Dynamic forces can induce powerful stellar activity able to transform the matter composition and morphology of galaxies. The lectures included in this book aim at a better understanding of these remarkable and fascinating phenomena. Though the book is intended for graduate students and young post-docs in astrophysics, it contains more advanced and original material, as well as historical perspectives, which will be of great interest to experts and astronomy teachers also.
Understanding star formation is one of the key fields in present-day astrophysics. This book treats a wide variety of the physical processes involved, as well as the main observational discoveries, with key points being discussed in detail. The current star formation in our galaxy is emphasized, because the most detailed observations are available for this case. The book presents a comparison of the various scenarios for star formation, discusses the basic physics underlying each one, and follows in detail the history of a star from its initial state in the interstellar gas to its becoming a condensed object in equilibrium. Both theoretical and observational evidence to support the validity of the general evolutionary path are presented, and methods for comparing the two are emphasized. The author is a recognized expert in calculations of the evolution of protostars, the structure and evolution of disks, and stellar evolution in general. This book will be of value to graduate students in astronomy and astrophysics as well as to active researchers in the field.
This volume contains the proceedings from the conference "The Labyrinth of Star Formation" that was held in Crete, Greece, in June 2012, to honour the contributions to the study of star formation made by Professor Anthony Whitworth of Cardiff University. The book covers many aspects of theoretical and observational star formation: low-mass star formation; young circumstellar discs; computational methods; triggered star formation; the stellar initial mass function; high-mass star formation and stellar clusters. Each section starts with a review paper, followed by papers discussing recent theoretical and observational work. This volume summarises our current understanding of star formation and is useful for both graduate students and researchers alike.
The book begins with a historical introduction, "Star Formation: The Early History", that presents new material of interest for students and historians of science. This is followed by two long articles on "Pre-Main-Sequence Evolution of Stars and Young Clusters" and "Observations of Young Stellar Objects". These articles on the fascinating problem of star formation from interstellar matter give a thorough overview of present-day theories and observations. The articles contain material so far unpublished in the astronomical literature. The book addresses graduate students and can be used as a textbook for advanced courses in stellar astrophysics.
This book provides a remarkable and complete survey of important questions at the interface between theoretical particle physics and cosmology. After discussing the theoretical and experimental physics revolution that led to the rise of the Standard Model in the past century, the author reviews all the major open puzzles, among them the hierarchy problem, the small value of the cosmological constant, the matter-antimatter asymmetry, and the dark matter enigma, including the state-of-the-art regarding proposed solutions. Also addressed are the rapidly expanding fields of thermal dark matter, cosmological first-order phase transitions and gravitational-wave signatures. In addition, the book presents the original and interdisciplinary PhD research work of the author relating to Weakly-Interacting-Massive-Particles around the TeV scale, which are among the most studied dark matter candidates. Motivated by the absence of experimental evidence for such particles, this thesis explores the possibility that dark matter is much heavier than what is conventionally assumed.
The origin of stars is one of the principle mysteries of nature. During the last two decades advances in technology have enabled more progress to be made in the quest to understand stellar origins than at any other time in history. The study of star formation has developed into one of the most important branches of mod ern astrophysical research. A large body of observational data and a considerable literat ure now exist concerning this topic and a 1arge community of international astronomers and physicists devote their efforts attempting to decipher the secrets of stellar birth. Yet, the young astronomerjphysicist or more advanced researcher desiring to obtain a basic background in this area of research must sift through a very diverse and sometimes bewildering literature. A literature which includes research in many discip1ines and sub discip1ines of classical astrophysics from stel lar structure to the interstellar medium and encompasses the entire range of the electromagnetic spectrum from radio to gamma rays. Often, the reward of a suc cessfu1 foray through the current literature is the realization that the results can be obsolete and outdated as soon as the ink is dry in the journal or the conference proceeding in which they are published.