Biomedical Devices and Their Applications

Biomedical Devices and Their Applications

Author: D. Shi

Publisher: Springer Science & Business Media

ISBN: 9783662061084

Category: Science

Page: 201

View: 709

Biomedical devices that contact with blood or tissue represent a wide range of products. Depending on their potential harm to a body, medical devices are categorized according to the degree, so their safety can be assured. All biomaterials are by definition designed to contact with a body for a certain period of time. The nature of the body contact, as well as the duration a material contacts with the body may initiate unwanted biological In comparison with invasive devices Oike catheters and medical responses. implants contact directly with tissue or with the circulating blood) non invasive devices (like wound-dressings and contact lenses contact with the skin, the sclera, and the mucosa or with open wounds) have a lesser risk of hurting a patient. When blood contacts with a foreign material, plasma proteins become absorpted to the surface within a few seconds. The reactions that follow, the so-called intrinsic pathway lead to the formation of fibrin and activation of platelets and white blood cells, result in blood clot formation.

BIOMEDICAL DEVICE TECHNOLOGY

BIOMEDICAL DEVICE TECHNOLOGY

Author: Anthony Y. K. Chan

Publisher: Charles C Thomas Publisher

ISBN: 9780398090838

Category: Biomedical engineering

Page: 788

View: 316

This book provides a comprehensive approach to studying the principles and design of biomedical devices as well as their applications in medicine. It is written for engineers and technologists who are interested in understanding the principles, design and applications of medical device technology. The book is also intended to be used as a textbook or reference for biomedical device technology courses in universities and colleges. It focuses on the functions and principles of medical devices (which are the invariant components) and uses specific designs and constructions to illustrate the concepts where appropriate. This book selectively covers diagnostic and therapeutic devices that are either commonly used or that their principles and design represent typical applications of the technology. In this second edition, almost every chapter has been revised—some with minor updates and some with significant changes and additions. For those who would like to know more, a collection of relevant published papers and book references is added at the end of each chapter. Based on feedback, a section on “Common Problems and Hazards” has been included for each medical device. In addition, more information is provided on the indications of use and clinical applications. Two new areas of medical device technology have been added in the two new chapters on “Cardiopulmonary Bypass Units” and “Audiology Equipment.”

Biomedical Devices

Biomedical Devices

Author: Raymond H. W. Lam

Publisher: Springer

ISBN: 9783030242374

Category: Medical

Page: 379

View: 211

This textbook provides essential knowledge for biomedical product development, including material properties, fabrication processes and design techniques for different applications, as well as process design and optimization. This book is multidisciplinary and readers can learn techniques to apply acquired knowledge for various applications of biomedical design. Further, this book encourages readers to discover and convert newly reported technologies into products and services for the future development of biomedical applications. This is an ideal book for upper-level undergraduate and graduate students, engineers, technologists, and researchers working in the area of biomedical engineering and manufacturing. This book also: Provides a comprehensive set of fundamental knowledge for engineering students and entry level engineers to design biomedical devices Offers a unique approach to manufacturing of biomedical devices by integrating and formulating different considerations in process design tasks into optimization problems Provides a broad range of application examples to guide readers through the thinking process of designing and manufacturing biomedical devices, from basic understanding about the requirements and regulations to a set of manufacturing parameters

Methods in Research and Development of Biomedical Devices

Methods in Research and Development of Biomedical Devices

Author: Kelvin K. L. Wong

Publisher: World Scientific

ISBN: 9789814436106

Category: Technology & Engineering

Page: 196

View: 667

This book presents a road map for applying the stages in conceptualization, evaluation, and testing of biomedical devices in a systematic order of approach, leading to solutions for medical problems within a well-deserved safety limit. The issues discussed will pave the way for understanding the preliminary concepts used in modern biomedical device engineering, which include medical imaging, computational fluid dynamics, finite element analysis, particle image velocimetry, and rapid prototyping. This book would undoubtedly be of use to biomedical engineers, medical doctors, radiologists, and any other professionals related to the research and development of devices for health care.

Metals for Biomedical Devices

Metals for Biomedical Devices

Author: Mitsuo Niinomi

Publisher: Woodhead Publishing

ISBN: 9780081026670

Category: Medical

Page: 596

View: 560

Metals for Biomedical Devices, Second Edition, has been fully updated and builds upon the success of its first edition, discussing the latest techniques in metal processing methods and the behavior of this important material. Initial chapters review the current status and selection of metals for biomedical devices. Subsequent chapters cover mechanical behavior, degradation and testing, corrosion, wear testing and biocompatibility, the processing of metals for biomedical applications, including topics such as forging metals and alloys, surface treatment, coatings and sterilization. Chapters in the final section discuss the clinical applications of metals, such as cardiovascular, orthopedic and new generation biomaterials. With its distinguished editor and team of expert contributors, this book is a standard reference for materials scientists, researchers and engineers working in the medical devices industry and academia. Reviews the latest techniques in metal processing methods, including surface treatment and sterilization Examines metal selection for biomedical devices, considering the biocompatibility of various metals Assesses mechanical behavior and the testing of metals, featuring the latest information on corrosion, fatigue and wear Discusses biodegradable alloys, including a new section on Mg alloys Includes a new section that discusses the use of additive manufacturing in the production of medical devices

Electronic Devices, Circuits, and Systems for Biomedical Applications

Electronic Devices, Circuits, and Systems for Biomedical Applications

Author: Suman Lata Tripathi

Publisher: Academic Press

ISBN: 9780323853699

Category: Technology & Engineering

Page: 584

View: 275

Electronic Devices, Circuits, and Systems for Biomedical Applications: Challenges and Intelligent Approaches explains the latest information on the design of new technological solutions for low-power, high-speed efficient biomedical devices, circuits and systems. The book outlines new methods to enhance system performance, provides key parameters to explore the electronic devices and circuit biomedical applications, and discusses innovative materials that improve device performance, even for those with smaller dimensions and lower costs. This book is ideal for graduate students in biomedical engineering and medical informatics, biomedical engineers, medical device designers, and researchers in signal processing. Presents major design challenges and research potential in biomedical systems Walks readers through essential concepts in advanced biomedical system design Focuses on healthcare system design for low power-efficient and highly-secured biomedical electronics

Smart Polymers and their Applications

Smart Polymers and their Applications

Author: Maria Rosa Aguilar

Publisher: Elsevier

ISBN: 9780857097026

Category: Technology & Engineering

Page: 584

View: 636

Smart polymers are polymers that respond to different stimuli or changes in the environment. Smart Polymers and their Applications reviews the types, synthesis, properties, and applications of smart polymers. Chapters in part one focus on types of polymers, including temperature-, pH-, photo-, and enzyme-responsive polymers. Shape memory polymers, smart polymer hydrogels, and self-healing polymer systems are also explored. Part two highlights applications of smart polymers, including smart instructive polymer substrates for tissue engineering; smart polymer nanocarriers for drug delivery; the use of smart polymers in medical devices for minimally invasive surgery, diagnosis, and other applications; and smart polymers for bioseparation and other biotechnology applications. Further chapters discuss the use of smart polymers for textile and packaging applications, and for optical data storage. Smart Polymers and their Applications is a technical resource for chemists, chemical engineers, mechanical engineers, and other professionals in the polymer industry; manufacturers in such sectors as medical, automotive, and aerospace engineering; and academic researchers in polymer science. Reviews the different types of smart polymer, discussing their properties, structure, design, and characterization Reviews applications of smart polymers in such areas as biomedical engineering, textiles, and food packaging

Biodegradable Materials and Their Applications

Biodegradable Materials and Their Applications

Author: Inamuddin

Publisher: John Wiley & Sons

ISBN: 9781119904908

Category: Technology & Engineering

Page: 885

View: 418

BIODEGRADABLE MATERIALS AND THEIR APPLICATIONS Biodegradable materials have ascended in importance in recent years and this book comprehensively discusses all facets and applications in 29 chapters making it a one-stop shop. Biodegradable materials have today become more compulsory because of increased environmental concerns and the growing demand for polymeric and plastic materials. Despite our sincere efforts to recycle used plastic materials, they ultimately tend to enter the oceans, which has led to grave pollution. It is necessary, therefore, to ensure that these wastes do not produce any hazards in the future. This has made an urgency to replace the synthetic material with green material in almost all possible areas of application. Biodegradable Materials and Their Applications covers a wide range of subjects and approaches, starting with an introduction to biodegradable material applications. Chapters focus on the development of various types of biodegradable materials with their applications in electronics, medicine, packaging, thermoelectric generations, protective equipment, films/coatings, 3D printing, disposable bioplastics, agriculture, and other commercial sectors. In biomedical applications, their use in the advancement of therapeutic devices like temporary implants, tissue engineering, and drug delivery vehicles are summarized. Audience Materials scientists, environmental and sustainability engineers, and any other researchers and graduate students associated with biodegradable materials.

Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering

Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering

Author: Soni, Shivani

Publisher: IGI Global

ISBN: 9781466663640

Category: Technology & Engineering

Page: 820

View: 729

As a paradigm for the future, micro-scale technology seeks to fuse revolutionary concepts in science and engineering and then translate it into reality. Nanotechnology is an interdisciplinary field that aims to connect what is seen with the naked eye and what is unseen on the molecular level. The Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering examines the strengths and future potential of micro-scale technologies in a variety of industries. Highlighting the benefits, shortcomings, and emerging perspectives in the application of nano-scale technologies, this book is a comprehensive reference source for synthetic chemists, engineers, graduate students, and researchers with an interest in the multidisciplinary applications, as well as the ongoing research in the field.

Bioelectronics and Medical Devices

Bioelectronics and Medical Devices

Author: Dr. Kunal Pal

Publisher: Woodhead Publishing

ISBN: 9780081024218

Category: Technology & Engineering

Page: 1006

View: 690

Bioelectronics and Medical Devices: From Materials to Devices-Fabrication, Applications and Reliability reviews the latest research on electronic devices used in the healthcare sector, from materials, to applications, including biosensors, rehabilitation devices, drug delivery devices, and devices based on wireless technology. This information is presented from the unique interdisciplinary perspective of the editors and contributors, all with materials science, biomedical engineering, physics, and chemistry backgrounds. Each applicable chapter includes a discussion of these devices, from materials and fabrication, to reliability and technology applications. Case studies, future research directions and recommendations for additional readings are also included. The book addresses hot topics, such as the latest, state-of the-art biosensing devices that have the ability for early detection of life-threatening diseases, such as tuberculosis, HIV and cancer. It covers rehabilitation devices and advancements, such as the devices that could be utilized by advanced-stage ALS patients to improve their interactions with the environment. In addition, electronic controlled delivery systems are reviewed, including those that are based on artificial intelligences. Presents the latest topics, including MEMS-based fabrication of biomedical sensors, Internet of Things, certification of medical and drug delivery devices, and electrical safety considerations Presents the interdisciplinary perspective of materials scientists, biomedical engineers, physicists and chemists on biomedical electronic devices Features systematic coverage in each chapter, including recent advancements in the field, case studies, future research directions, and recommendations for additional readings

Biological Synthesis of Nanoparticles and Their Applications

Biological Synthesis of Nanoparticles and Their Applications

Author: L Karthik

Publisher: CRC Press

ISBN: 9780429560255

Category: Medical

Page: 284

View: 649

Biological Synthesis of Nanoparticles and Their Applications gives insight into the synthesis of nanoparticles utilizing the natural routes. It demonstrates various strategies for the synthesis of nanoparticles utilizing plants, microscopic organisms like bacteria, fungi, algae and so forth. It orchestrates interdisciplinary hypothesis, ideas, definitions, models and discoveries associated with complex cell of the prokaryotes and eukaryotes. Highlights: Discusses biological approach towards the nanoparticle synthesis Describes the role of nanotechnology in the field of medicine and its medical devices Covers application and usage of the chemicals at the molecular level to act as catalysts and binding products for both organic and inorganic Chemical Reactions Reviews application in physics such as solar cells, photovoltaics and other usage Microorganisms can aggregate and detoxify substantial metals because of different reductase enzymes, which can diminish metal salts to metal nanoparticles. The readers after going through this book will have detailed account of mechanism of bio-synthesis of nanoparticles.

Optical MEMS, Nanophotonics, and Their Applications

Optical MEMS, Nanophotonics, and Their Applications

Author: Guangya Zhou

Publisher: CRC Press

ISBN: 9781498741347

Category: Technology & Engineering

Page: 432

View: 683

This book covers device design fundamentals and system applications in optical MEMS and nanophotonics. Expert authors showcase examples of how fusion of nanoelectromechanical (NEMS) with nanophotonic elements is creating powerful new photonic devices and systems including MEMS micromirrors, MEMS tunable filters, MEMS-based adjustable lenses and apertures, NEMS-driven variable silicon nanowire waveguide couplers, and NEMS tunable photonic crystal nanocavities. The book also addresses system applications in laser scanning displays, endoscopic systems, space telescopes, optical telecommunication systems, and biomedical implantable systems. Presents efforts to scale down mechanical and photonic elements into the nano regime for enhanced performance, faster operational speed, greater bandwidth, and higher level of integration. Showcases the integration of MEMS and optical/photonic devices into real commercial products. Addresses applications in optical telecommunication, sensing, imaging, and biomedical systems. Prof. Vincent C. Lee is Associate Professor in the Department of Electrical and Computer Engineering, National University of Singapore. Prof. Guangya Zhou is Associate Professor in the Department of Mechanical Engineering at National University of Singapore.