Biomedical Signal Analysis

Biomedical Signal Analysis

Author: Rangaraj M. Rangayyan

Publisher: John Wiley & Sons

ISBN: 9780470911396

Category: Science

Page: 720

View: 811

The book will help assist a reader in the development of techniques for analysis of biomedical signals and computer aided diagnoses with a pedagogical examination of basic and advanced topics accompanied by over 350 figures and illustrations. Wide range of filtering techniques presented to address various applications 800 mathematical expressions and equations Practical questions, problems and laboratory exercises Includes fractals and chaos theory with biomedical applications

Biomedical Signal Processing

Biomedical Signal Processing

Author: Metin Akay

Publisher: Academic Press

ISBN: 9780323140140

Category: Medical

Page: 377

View: 423

Sophisticated techniques for signal processing are now available to the biomedical specialist! Written in an easy-to-read, straightforward style, Biomedical Signal Processing presents techniques to eliminate background noise, enhance signal detection, and analyze computer data, making results easy to comprehend and apply. In addition to examining techniques for electrical signal analysis, filtering, and transforms, the author supplies an extensive appendix with several computer programs that demonstrate techniques presented in the text.

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques

Author: Abdulhamit Subasi

Publisher: Academic Press

ISBN: 9780128176733

Category: Business & Economics

Page: 456

View: 459

Practical Guide for Biomedical Signals Analysis Using Machine Learning Techniques: A MATLAB Based Approach presents how machine learning and biomedical signal processing methods can be used in biomedical signal analysis. Different machine learning applications in biomedical signal analysis, including those for electrocardiogram, electroencephalogram and electromyogram are described in a practical and comprehensive way, helping readers with limited knowledge. Sections cover biomedical signals and machine learning techniques, biomedical signals, such as electroencephalogram (EEG), electromyogram (EMG) and electrocardiogram (ECG), different signal-processing techniques, signal de-noising, feature extraction and dimension reduction techniques, such as PCA, ICA, KPCA, MSPCA, entropy measures, and other statistical measures, and more. This book is a valuable source for bioinformaticians, medical doctors and other members of the biomedical field who need a cogent resource on the most recent and promising machine learning techniques for biomedical signals analysis. Provides comprehensive knowledge in the application of machine learning tools in biomedical signal analysis for medical diagnostics, brain computer interface and man/machine interaction Explains how to apply machine learning techniques to EEG, ECG and EMG signals Gives basic knowledge on predictive modeling in biomedical time series and advanced knowledge in machine learning for biomedical time series

Advanced Methods of Biomedical Signal Processing

Advanced Methods of Biomedical Signal Processing

Author: Sergio Cerutti

Publisher: John Wiley & Sons

ISBN: 1118007735

Category: Science

Page: 608

View: 276

This book grew out of the IEEE-EMBS Summer Schools on Biomedical Signal Processing, which have been held annually since 2002 to provide the participants state-of-the-art knowledge on emerging areas in biomedical engineering. Prominent experts in the areas of biomedical signal processing, biomedical data treatment, medicine, signal processing, system biology, and applied physiology introduce novel techniques and algorithms as well as their clinical or physiological applications. The book provides an overview of a compelling group of advanced biomedical signal processing techniques, such as multisource and multiscale integration of information for physiology and clinical decision; the impact of advanced methods of signal processing in cardiology and neurology; the integration of signal processing methods with a modelling approach; complexity measurement from biomedical signals; higher order analysis in biomedical signals; advanced methods of signal and data processing in genomics and proteomics; and classification and parameter enhancement.

Ultra Low-Power Biomedical Signal Processing

Ultra Low-Power Biomedical Signal Processing

Author: Sandro Augusto Pavlik Haddad

Publisher: Springer Science & Business Media

ISBN: 9781402090738

Category: Technology & Engineering

Page: 215

View: 903

Often WT systems employ the discrete wavelet transform, implemented on a digital signal processor. However, in ultra low-power applications such as biomedical implantable devices, it is not suitable to implement the WT by means of digital circuitry due to the relatively high power consumption associated with the required A/D converter. Low-power analog realization of the wavelet transform enables its application in vivo, e.g. in pacemakers, where the wavelet transform provides a means to extremely reliable cardiac signal detection. In Ultra Low-Power Biomedical Signal Processing we present a novel method for implementing signal processing based on WT in an analog way. The methodology presented focuses on the development of ultra low-power analog integrated circuits that implement the required signal processing, taking into account the limitations imposed by an implantable device.

Practical Biomedical Signal Analysis Using MATLAB®

Practical Biomedical Signal Analysis Using MATLAB®

Author: Katarzyn J. Blinowska

Publisher: CRC Press

ISBN: 9781439812020

Category: Medical

Page: 324

View: 489

Practical Biomedical Signal Analysis Using MATLAB® presents a coherent treatment of various signal processing methods and applications. The book not only covers the current techniques of biomedical signal processing, but it also offers guidance on which methods are appropriate for a given task and different types of data. The first several chapters of the text describe signal analysis techniques—including the newest and most advanced methods—in an easy and accessible way. MATLAB routines are listed when available and freely available software is discussed where appropriate. The final chapter explores the application of the methods to a broad range of biomedical signals, highlighting problems encountered in practice. A unified overview of the field, this book explains how to properly use signal processing techniques for biomedical applications and avoid misinterpretations and pitfalls. It helps readers to choose the appropriate method as well as design their own methods.

Biomedical Signal Analysis

Biomedical Signal Analysis

Author: Fabian J. Theis

Publisher: MIT Press

ISBN: 9780262013284

Category: Computers

Page: 415

View: 679

A comprehensive introduction to innovative methods in the field of biomedical signal analysis, covering both theory and practice. Biomedical signal analysis has become one of the most important visualization and interpretation methods in biology and medicine. Many new and powerful instruments for detecting, storing, transmitting, analyzing, and displaying images have been developed in recent years, allowing scientists and physicians to obtain quantitative measurements to support scientific hypotheses and medical diagnoses. This book offers an overview of a range of proven and new methods, discussing both theoretical and practical aspects of biomedical signal analysis and interpretation.After an introduction to the topic and a survey of several processing and imaging techniques, the book describes a broad range of methods, including continuous and discrete Fourier transforms, independent component analysis (ICA), dependent component analysis, neural networks, and fuzzy logic methods. The book then discusses applications of these theoretical tools to practical problems in everyday biosignal processing, considering such subjects as exploratory data analysis and low-frequency connectivity analysis in fMRI, MRI signal processing including lesion detection in breast MRI, dynamic cerebral contrast-enhanced perfusion MRI, skin lesion classification, and microscopic slice image processing and automatic labeling. Biomedical Signal Analysis can be used as a text or professional reference. Part I, on methods, forms a self-contained text, with exercises and other learning aids, for upper-level undergraduate or graduate-level students. Researchers or graduate students in systems biology, genomic signal processing, and computer-assisted radiology will find both parts I and II (on applications) a valuable handbook.

Biomedical Signal Analysis for Connected Healthcare

Biomedical Signal Analysis for Connected Healthcare

Author: Sridhar Krishnan

Publisher: Academic Press

ISBN: 9780128131732

Category: Technology & Engineering

Page: 334

View: 101

Biomedical Signal Analysis for Connected Healthcare provides rigorous coverage on several generations of techniques, including time domain approaches for event detection, spectral analysis for interpretation of clinical events of interest, time-varying signal processing for understanding dynamical aspects of complex biomedical systems, the application of machine learning principles in enhanced clinical decision-making, the application of sparse techniques and compressive sensing in providing low-power applications that are essential for wearable designs, the emerging paradigms of the Internet of Things, and connected healthcare. Provides comprehensive coverage of biomedical engineering, technologies, and healthcare applications of various physiological signals Covers vital signals, including ECG, EEG, EMG and body sounds Includes case studies and MATLAB code for selected applications

Practical Biomedical Signal Analysis Using MATLAB

Practical Biomedical Signal Analysis Using MATLAB

Author: Katarzyn Blinowska

Publisher: CRC Press

ISBN: 9781439812037

Category: Medical

Page: 324

View: 584

Practical Biomedical Signal Analysis Using MATLAB presents a coherent treatment of various signal processing methods and applications. The book not only covers the current techniques of biomedical signal processing, but it also offers guidance on which methods are appropriate for a given task and different types of data.The first several chapters o

Practical Biomedical Signal Analysis Using MATLAB®

Practical Biomedical Signal Analysis Using MATLAB®

Author: Katarzyna J. Blinowska

Publisher: CRC Press

ISBN: 9780429775734

Category: Medical

Page: 370

View: 744

Covering the latest cutting-edge techniques in biomedical signal processing while presenting a coherent treatment of various signal processing methods and applications, this second edition of Practical Biomedical Signal Analysis Using MATLAB® also offers practical guidance on which procedures are appropriate for a given task and different types of data. It begins by describing signal analysis techniques—including the newest and most advanced methods in the field—in an easy and accessible way, illustrating them with Live Script demos. MATLAB® routines are listed when available, and freely available software is discussed where appropriate. The book concludes by exploring the applications of the methods to a broad range of biomedical signals while highlighting common problems encountered in practice. These chapters have been updated throughout and include new sections on multiple channel analysis and connectivity measures, phase-amplitude analysis, functional near-infrared spectroscopy, fMRI (BOLD) signals, wearable devices, multimodal signal analysis, and brain-computer interfaces. By providing a unified overview of the field, this book explains how to integrate signal processing techniques in biomedical applications properly and explores how to avoid misinterpretations and pitfalls. It helps readers to choose the appropriate method as well as design their own methods. It will be an excellent guide for graduate students studying biomedical engineering and practicing researchers in the field of biomedical signal analysis. Features: Fully updated throughout with new achievements, technologies, and methods and is supported with over 40 original MATLAB Live Scripts illustrating the discussed techniques, suitable for self-learning or as a supplement to college courses Provides a practical comparison of the advantages and disadvantages of different approaches in the context of various applications Applies the methods to a variety of signals, including electric, magnetic, acoustic, and optical Katarzyna J. Blinowska is a Professor emeritus at the University of Warsaw, Poland, where she was director of Graduate Studies in Biomedical Physics and head of the Department of Biomedical Physics. Currently, she is employed at the Institute of Biocybernetics and Biomedical Engineering of the Polish Academy of Sciences. She has been at the forefront in developing new advanced time-series methods for research and clinical applications. Jarosław Żygierewicz is a Professor at the University of Warsaw, Poland. His research focuses on developing methods for analyzing EEG and MEG signals, brain-computer interfaces, and applications of machine learning in signal processing and classification.

Biomedical Signal Analysis

Biomedical Signal Analysis

Author: Rangaraj M. Rangayyan

Publisher: Wiley-IEEE Press

ISBN: UOM:39015056787958

Category: Medical

Page: 560

View: 296

The development of techniques to analyze biomedical signals, such as electro-cardiograms, has dramatically affected countless lives by making possible improved noninvasive diagnosis, online monitoring of critically ill patients, and rehabilitation and sensory aids for the handicapped. Rangaraj Rangayyan supplies a practical, hands-on field guide to this constantly evolving technology in Biomedical Signal Analysis, focusing on the diagnostic challenges that medical professionals continue to face. Dr. Rangayyan applies a problem-solving approach to his study. Each chapter begins with the statement of a different biomedical signal problem, followed by a selection of real-life case studies and the associated signals. Signal processing, modeling, or analysis techniques are then presented, starting with relatively simple "textbook" methods, followed by more sophisticated research approaches. The chapter concludes with one or more application solutions; illustrations of real-life biomedical signals and their derivatives are included throughout. Among the topics addressed are: Concurrent, coupled, and correlated processes Filtering for removal of artifacts Event detection and characterization Frequency-domain characterization Modeling biomedical systems Analysis of nonstationary signals Pattern classification and diagnostic decision The chapters also present a number of laboratory exercises, study questions, and problems to facilitate preparation for class examinations and practical applications. Biomedical Signal Analysis provides a definitive resource for upper-level under-graduate and graduate engineering students, as well as for practicing engineers, computer scientists, information technologists, medical physicists, and data processing specialists. An authoritative assessment of the problems and applications of biomedical signals, rooted in practical case studies