Calculus Deconstructed

Calculus Deconstructed

Author: Zbigniew H. Nitecki

Publisher: American Mathematical Society

ISBN: 9781470466756

Category: Mathematics

Page: 491

View: 837

Calculus Deconstructed is a thorough and mathematically rigorous exposition of single-variable calculus for readers with some previous exposure to calculus techniques but not to methods of proof. This book is appropriate for a beginning Honors Calculus course assuming high school calculus or a "bridge course" using basic analysis to motivate and illustrate mathematical rigor. It can serve as a combination textbook and reference book for individual self-study. Standard topics and techniques in single-variable calculus are presented in context of a coherent logical structure, building on familiar properties of real numbers and teaching methods of proof by example along the way. Numerous examples reinforce both practical and theoretical understanding, and extensive historical notes explore the arguments of the originators of the subject. No previous experience with mathematical proof is assumed: rhetorical strategies and techniques of proof (reductio ad absurdum, induction, contrapositives, etc.) are introduced by example along the way. Between the text and exercises, proofs are available for all the basic results of calculus for functions of one real variable.

Calculus in 3D: Geometry, Vectors, and Multivariate Calculus

Calculus in 3D: Geometry, Vectors, and Multivariate Calculus

Author: Zbigniew Nitecki

Publisher: American Mathematical Soc.

ISBN: 9781470443603

Category: Calculus

Page: 405

View: 539

Calculus in 3D is an accessible, well-written textbook for an honors course in multivariable calculus for mathematically strong first- or second-year university students. The treatment given here carefully balances theoretical rigor, the development of student facility in the procedures and algorithms, and inculcating intuition into underlying geometric principles. The focus throughout is on two or three dimensions. All of the standard multivariable material is thoroughly covered, including vector calculus treated through both vector fields and differential forms. There are rich collections of problems ranging from the routine through the theoretical to deep, challenging problems suitable for in-depth projects. Linear algebra is developed as needed. Unusual features include a rigorous formulation of cross products and determinants as oriented area, an in-depth treatment of conics harking back to the classical Greek ideas, and a more extensive than usual exploration and use of parametrized curves and surfaces. Zbigniew Nitecki is Professor of Mathematics at Tufts University and a leading authority on smooth dynamical systems. He is the author of Differentiable Dynamics, MIT Press; Differential Equations, A First Course (with M. Guterman), Saunders; Differential Equations with Linear Algebra (with M. Guterman), Saunders; and Calculus Deconstructed, AMS.

College Calculus

College Calculus

Author: Michael E. Boardman

Publisher: The Mathematical Association of America

ISBN: 9781939512062

Category: Mathematics

Page: 387

View: 128

College Calculus: A One-Term Course for Students with Previous Calculus Experience is a textbook for students who have successfully experienced an introductory calculus course in high school. College Calculus begins with a brief review of some of the content of the high school calculus course, and proceeds to give students a thorough grounding in the remaining topics in single variable calculus, including integration techniques, applications of the definite integral, separable and linear differential equations, hyperbolic functions, parametric equations and polar coordinates, L’Hôpital’s rule and improper integrals, continuous probability models, and infinite series. Each chapter concludes with several “Explorations,” extended discovery investigations to supplement that chapter’s material. The text is ideal as the basis of a course focused on the needs of prospective majors in the STEM disciplines (science, technology, engineering, and mathematics). A one-term course based on this text provides students with a solid foundation in single variable calculus and prepares them for the next course in college level mathematics, be it multivariable calculus, linear algebra, a course in discrete mathematics, statistics, etc.

Paradoxes and Sophisms in Calculus

Paradoxes and Sophisms in Calculus

Author: Sergiy Klymchuk

Publisher: American Mathematical Soc.

ISBN: 9780883857816

Category: Mathematics

Page: 114

View: 921

Paradoxes and Sophisms in Calculus offers a delightful supplementary resource to enhance the study of single variable calculus. By the word paradox the [Author];s mean a surprising, unexpected, counter-intuitive statement that looks invalid, but in fact is true. The word sophism describes intentionally invalid reasoning that looks formally correct, but in fact contains a subtle mistake or flaw. In other words, a sophism is a false proof of an incorrect statement. A collection of over fifty paradoxes and sophisms showcases the subtleties of this subject and leads students to contemplate the underlying concepts. A number of the examples treat historically significant issues that arose in the development of calculus, while others more naturally challenge readers to understand common misconceptions. Sophisms and paradoxes from the areas of functions, limits, derivatives, integrals, sequences, and series are explored.

Calculus for the Life Sciences: A Modeling Approach

Calculus for the Life Sciences: A Modeling Approach

Author: James L. Cornette

Publisher: American Mathematical Soc.

ISBN: 9781470451424

Category: Calculus

Page: 713

View: 199

Calculus for the Life Sciences is an entire reimagining of the standard calculus sequence with the needs of life science students as the fundamental organizing principle. Those needs, according to the National Academy of Science, include: the mathematical concepts of change, modeling, equilibria and stability, structure of a system, interactions among components, data and measurement, visualization, and algorithms. This book addresses, in a deep and significant way, every concept on that list. The book begins with a primer on modeling in the biological realm and biological modeling is the theme and frame for the entire book. The authors build models of bacterial growth, light penetration through a column of water, and dynamics of a colony of mold in the first few pages. In each case there is actual data that needs fitting. In the case of the mold colony that data is a set of photographs of the colony growing on a ruled sheet of graph paper and the students need to make their own approximations. Fundamental questions about the nature of mathematical modeling—trying to approximate a real-world phenomenon with an equation—are all laid out for the students to wrestle with. The authors have produced a beautifully written introduction to the uses of mathematics in the life sciences. The exposition is crystalline, the problems are overwhelmingly from biology and interesting and rich, and the emphasis on modeling is pervasive. An instructor's manual for this title is available electronically to those instructors who have adopted the textbook for classroom use. Please send email to [email protected] for more information. Online question content and interactive step-by-step tutorials are available for this title in WebAssign. WebAssign is a leading provider of online instructional tools for both faculty and students.

Transcendental Curves in the Leibnizian Calculus

Transcendental Curves in the Leibnizian Calculus

Author: Viktor Blasjo

Publisher: Academic Press

ISBN: 9780128132982

Category: Mathematics

Page: 282

View: 639

Transcendental Curves in the Leibnizian Calculus analyzes the mathematical and philosophical conflict between Euclidean and Cartesian mathematics. For millennia, mathematical meaning and ontology had been anchored in geometrical constructions, as epitomized by Euclid's ruler and compass. As late as 1637, Descartes had placed himself squarely in this tradition when he justified his new technique of identifying curves with equations by means of certain curve-tracing instruments, thereby bringing together the ancient constructive tradition and modern algebraic methods in a satisfying marriage. But rapid advances in the new fields of infinitesimal calculus and mathematical mechanics soon ruined his grand synthesis. Descartes's scheme left out transcendental curves, i.e. curves with no polynomial equation, but in the course of these subsequent developments such curves emerged as indispensable. It was becoming harder and harder to juggle cutting-edge mathematics and ancient conceptions of its foundations at the same time, yet leading mathematicians, such as Leibniz felt compelled to do precisely this. The new mathematics fit more naturally an analytical conception of curves than a construction-based one, yet no one wanted to betray the latter, as this was seen as virtually tantamount to stop doing mathematics altogether. The credibility and authority of mathematics depended on it. Brings to light this underlying and often implicit complex of concerns that permeate early calculus Evaluates the technical conception and mathematical construction of the geometrical method Reveals a previously unrecognized Liebnizian programmatic cohesion in early calculus Provides a beautifully written work of outstanding original scholarship

An Invitation to Real Analysis

An Invitation to Real Analysis

Author: Luis F. Moreno

Publisher: The Mathematical Association of America

ISBN: 9781939512055

Category: Mathematics

Page: 681

View: 413

An Invitation to Real Analysis is written both as a stepping stone to higher calculus and analysis courses, and as foundation for deeper reasoning in applied mathematics. This book also provides a broader foundation in real analysis than is typical for future teachers of secondary mathematics. In connection with this, within the chapters, students are pointed to numerous articles from The College Mathematics Journal and The American Mathematical Monthly. These articles are inviting in their level of exposition and their wide-ranging content. Axioms are presented with an emphasis on the distinguishing characteristics that new ones bring, culminating with the axioms that define the reals. Set theory is another theme found in this book, beginning with what students are familiar with from basic calculus. This theme runs underneath the rigorous development of functions, sequences, and series, and then ends with a chapter on transfinite cardinal numbers and with chapters on basic point-set topology. Differentiation and integration are developed with the standard level of rigor, but always with the goal of forming a firm foundation for the student who desires to pursue deeper study. A historical theme interweaves throughout the book, with many quotes and accounts of interest to all readers. Over 600 exercises and dozens of figures help the learning process. Several topics (continued fractions, for example), are included in the appendices as enrichment material. An annotated bibliography is included.

Common Sense Mathematics

Common Sense Mathematics

Author: Ethan D. Bolker

Publisher: The Mathematical Association of America

ISBN: 9781939512109

Category: Mathematics

Page: 329

View: 330

Common Sense Mathematics is a text for a one semester college-level course in quantitative literacy. The text emphasizes common sense and common knowledge in approaching real problems through popular news items and finding useful mathematical tools and frames with which to address those questions. We asked ourselves what we hoped our students would remember about this course in ten year’s time. From that ten year perspective thoughts about syllabus–“what topics should we cover?"–seemed much too narrow. What matters more is our wish to change the way our students' minds work–the way they approach a problem, or, more generally, the way they approach the world. Most people “skip the numbers" in newspapers, magazines, on the web and (more importantly) even in financial information. We hope that in ten years our students will follow the news, confident in their ability to make sense of the numbers they find there and in their daily lives. Most quantitative reasoning texts are arranged by mathematical topics to be mastered. Since the mathematics is only a part of what we hope students learn, we've chosen another strategy. We look at real life stories that can be best understood with careful reading and a little mathematics.

Distilling Ideas

Distilling Ideas

Author: Brian P. Katz

Publisher: American Mathematical Society

ISBN: 9781470465803

Category: Mathematics

Page: 189

View: 176

Mathematics is not a spectator sport; successful students of mathematics grapple with ideas for themselves. Distilling Ideas presents a carefully designed sequence of exercises and theorem statements that challenge students to create proofs and concepts. As students meet these challenges, they discover strategies of proofs and strategies of thinking beyond mathematics. In other words, Distilling Ideas helps its users to develop the skills, attitudes, and habits of mind of a mathematician, and to enjoy the process of distilling and exploring ideas. Distilling Ideas is an ideal textbook for a first proof-based course. The text engages the range of students' preferences and aesthetics through a corresponding variety of interesting mathematical content from graphs, groups, and epsilon-delta calculus. Each topic is accessible to users without a background in abstract mathematics because the concepts arise from asking questions about everyday experience. All the common proof structures emerge as natural solutions to authentic needs. Distilling Ideas or any subset of its chapters is an ideal resource either for an organized Inquiry Based Learning course or for individual study.

A Radical Approach to Real Analysis

A Radical Approach to Real Analysis

Author: David Bressoud

Publisher: American Mathematical Society

ISBN: 9781470469047

Category: Mathematics

Page: 339

View: 259

In this second edition of the MAA classic, exploration continues to be an essential component. More than 60 new exercises have been added, and the chapters on Infinite Summations, Differentiability and Continuity, and Convergence of Infinite Series have been reorganized to make it easier to identify the key ideas. A Radical Approach to Real Analysis is an introduction to real analysis, rooted in and informed by the historical issues that shaped its development. It can be used as a textbook, as a resource for the instructor who prefers to teach a traditional course, or as a resource for the student who has been through a traditional course yet still does not understand what real analysis is about and why it was created. The book begins with Fourier's introduction of trigonometric series and the problems they created for the mathematicians of the early 19th century. It follows Cauchy's attempts to establish a firm foundation for calculus and considers his failures as well as his successes. It culminates with Dirichlet's proof of the validity of the Fourier series expansion and explores some of the counterintuitive results Riemann and Weierstrass were led to as a result of Dirichlet's proof.

Teaching Statistics Using Baseball

Teaching Statistics Using Baseball

Author: Jim Albert

Publisher: American Mathematical Society

ISBN: 9781470469382

Category: Mathematics

Page: 257

View: 199

Teaching Statistics Using Baseball is a collection of case studies and exercises applying statistical and probabilistic thinking to the game of baseball. Baseball is the most statistical of all sports since players are identified and evaluated by their corresponding hitting and pitching statistics. There is an active effort by people in the baseball community to learn more about baseball performance and strategy by the use of statistics. This book illustrates basic methods of data analysis and probability models by means of baseball statistics collected on players and teams. Students often have difficulty learning statistics ideas since they are explained using examples that are foreign to the students. The idea of the book is to describe statistical thinking in a context (that is, baseball) that will be familiar and interesting to students. The book is organized using a same structure as most introductory statistics texts. There are chapters on the analysis on a single batch of data, followed with chapters on comparing batches of data and relationships. There are chapters on probability models and on statistical inference. The book can be used as the framework for a one-semester introductory statistics class focused on baseball or sports. This type of class has been taught at Bowling Green State University. It may be very suitable for a statistics class for students with sports-related majors, such as sports management or sports medicine. Alternately, the book can be used as a resource for instructors who wish to infuse their present course in probability or statistics with applications from baseball. The second edition of Teaching Statistics follows the same structure as the first edition, where the case studies and exercises have been replaced by modern players and teams, and the new types of baseball data from the PitchFX system and fangraphs.com are incorporated into the text.