Following the highly successful International Conference on Computer Vision - stems held in Las Palmas, Spain (ICVS’99), this second International Workshop on Computer Vision Systems, ICVS 2001 was held as an associated workshop of the International Conference on Computer Vision in Vancouver, Canada. The organization of ICVS’99 and ICVS 2001 was motivated by the fact that the - jority of computer vision conferences focus on component technologies. However, Computer Vision has reached a level of maturity that allows us not only to p- form research on individual methods and system components but also to build fully integrated computer vision systems of signi cant complexity. This opens a number of new problems related to system architecture, methods for system synthesis and veri cation, active vision systems, control of perception and - tion, knowledge and system representation, context modeling, cue integration, etc. By focusing on methods and concepts for the construction of fully integrated vision systems, ICVS aims to bring together researchers interested in computer vision systems. Similar to the previous event in Las Palmas, ICVS 2001 was organized as a single-track workshop consisting of high-quality, previously unpublished papers on new and original research on computer vision systems. All contributions were presented orally. A total of 32 papers were submitted and reviewed thoroughly by program committee members. Twenty of them have been selected for p- sentation. We would like to thank all members of the organizing and program committee for their help in putting together a high-quality workshop.
In the past few years, with the advances in microelectronics and digital te- nology, cameras became a widespread media. This, along with the enduring increase in computing power boosted the development of computer vision s- tems. The International Conference on Computer Vision Systems (ICVS) covers the advances in this area. This is to say that ICVS is not and should not be yet another computer vision conference. The ?eld of computer vision is fully covered by many well-established and famous conferences and ICVS di?ers from these by covering the systems point of view. ICVS 2008 was the 6th International Conference dedicated to advanced research on computer vision systems. The conference, continuing a series of successful events in Las Palmas, Vancouver, Graz, New York and Bielefeld, in 2008 was held on Santorini. In all, 128 papers entered the review process and each was reviewed by three independent reviewers using the double-blind review method. Of these, 53 - pers were accepted (23 as oral and 30 as poster presentation). There were also two invited talks by P. Anandan and by Heinrich H. Bultho ̈ ?. The presented papers cover all aspects of computer vision systems, namely: cognitive vision, monitor and surveillance, computer vision architectures, calibration and reg- tration, object recognition and tracking, learning, human—machine interaction and cross-modal systems.
This book constitutes the refereed proceedings of the 7th International Conference on Computer Vision Systems, ICVS 2009, held in Liege, Belgium, October 13-15, 2009. The 21 papers for oral presentation presented together with 24 poster presentations and 2 invited papers were carefully reviewed and selected from 96 submissions. The papers are organized in topical sections on human-machine-interaction, sensors, features and representations, stereo, 3D and optical flow, calibration and registration, mobile and autonomous systems, evaluation, studies and applications, learning, recognition and adaption.
Acts as single source reference providing readers with an overview of how computer vision can contribute to the different applications in the field of road transportation This book presents a survey of computer vision techniques related to three key broad problems in the roadway transportation domain: safety, efficiency, and law enforcement. The individual chapters present significant applications within those problem domains, each presented in a tutorial manner, describing the motivation for and benefits of the application, and a description of the state of the art. Key features: Surveys the applications of computer vision techniques to road transportation system for the purposes of improving safety and efficiency and to assist law enforcement. Offers a timely discussion as computer vision is reaching a point of being useful in the field of transportation systems. Available as an enhanced eBook with video demonstrations to further explain the concepts discussed in the book, as well as links to publically available software and data sets for testing and algorithm development. The book will benefit the many researchers, engineers and practitioners of computer vision, digital imaging, automotive and civil engineering working in intelligent transportation systems. Given the breadth of topics covered, the text will present the reader with new and yet unconceived possibilities for application within their communities.
This work focuses on central catadioptric systems, from the early step of calibration to high-level tasks such as 3D information retrieval. The book opens with a thorough introduction to the sphere camera model, along with an analysis of the relation between this model and actual central catadioptric systems. Then, a new approach to calibrate any single-viewpoint catadioptric camera is described. This is followed by an analysis of existing methods for calibrating central omnivision systems, and a detailed examination of hybrid two-view relations that combine images acquired with uncalibrated central catadioptric systems and conventional cameras. In the remaining chapters, the book discusses a new method to compute the scale space of any omnidirectional image acquired with a central catadioptric system, and a technique for computing the orientation of a hand-held omnidirectional catadioptric camera.
The application of intelligent imaging techniques to industrial vision problems is an evolving aspect of current machine vision research. Machine vision is a relatively new technology, more concerned with systems engineering than with computer science, and with much to offer the manufacturing industry in terms of improving efficiency, safety and product quality. Beginning with an introductory chapter on the basic concepts, the authors develop these ideas to describe intelligent imaging techniques for use in a new generation of industrial imaging systems. Sections cover the application of AI languages such as Prolog, the use of multi-media interfaces and multi-processor systems, external device control, and colour recognition. The text concludes with a discussion of several case studies that illustrate how intelligent machine vision techniques can be used in industrial applications.
"This book provides interdisciplinary research that evaluates the performance of machine visual models and systems in comparison to biological systems, blending the ideas of current scientific knowledge and biological vision"--
This volume, and the accompanying CD-ROM, contain 163 contributions from ICCVG04, which is one of the main international conferences in computer vision and computer graphics in Central Europe. This biennial conference was organised in 2004 jointly by the Association for Image Processing, the Polish-Japanese Institute of Information Technology, and the Silesian University of Technology. The conference covers a wide scope, including Computer Vision, Computational Geometry, Geometrical Models of Objects and Sciences, Motion Analysis, Visual Navigation and Active Vision, Image and Video Coding, Color and Multispectral Image Processing, Image Filtering and Enhancement, Virtual Reality and Multimedia Applications, Biomedical Applications, Image and Video Databases, Pattern Recognition, Modelling of Human Visual Perception, Computer Animation, Visualization and Data Presentation. These proceedings document cutting edge research in computer vision and graphics, and will be an essential reference for all researchers working in the area.
This book was conceived during the Workshop "Calibration and Orientation of Cameras in Computer Vision" at the XVIIth Congress of the ISPRS (In ternational Society of Photogrammetry and Remote Sensing), in July 1992 in Washington, D. C. The goal of this workshop was to bring photogrammetry and computer vision experts together in order to exchange ideas, concepts and approaches in camera calibration and orientation. These topics have been addressed in photogrammetry research for a long time, starting in the sec ond half of the 19th century. Over the years standard procedures have been developed and implemented, in particular for metric cameras, such that in the photogrammetric community such issues were considered as solved prob lems. With the increased use of non-metric cameras (in photogrammetry they are revealingly called "amateur" cameras), especially CCD cameras, and the exciting possibilities of acquiring long image sequences quite effortlessly and processing image data automatically, online and even in real-time, the need to take a new and fresh look at various calibration and orientation issues became obvious. Here most activities emerged through the computer vision commu nity, which was somewhat unaware as to what had already been achieved in photogrammetry. On the other hand, photogrammetrists seemed to ignore the new and interesting studies, in particular on the problems of orienta tion, that were being performed by computer vision experts.
How does the computer learn to understand what it sees? Deep Learning for Vision Systems answers that by applying deep learning to computer vision. Using only high school algebra, this book illuminates the concepts behind visual intuition. You'll understand how to use deep learning architectures to build vision system applications for image generation and facial recognition. Summary Computer vision is central to many leading-edge innovations, including self-driving cars, drones, augmented reality, facial recognition, and much, much more. Amazing new computer vision applications are developed every day, thanks to rapid advances in AI and deep learning (DL). Deep Learning for Vision Systems teaches you the concepts and tools for building intelligent, scalable computer vision systems that can identify and react to objects in images, videos, and real life. With author Mohamed Elgendy's expert instruction and illustration of real-world projects, you’ll finally grok state-of-the-art deep learning techniques, so you can build, contribute to, and lead in the exciting realm of computer vision! Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology How much has computer vision advanced? One ride in a Tesla is the only answer you’ll need. Deep learning techniques have led to exciting breakthroughs in facial recognition, interactive simulations, and medical imaging, but nothing beats seeing a car respond to real-world stimuli while speeding down the highway. About the book How does the computer learn to understand what it sees? Deep Learning for Vision Systems answers that by applying deep learning to computer vision. Using only high school algebra, this book illuminates the concepts behind visual intuition. You'll understand how to use deep learning architectures to build vision system applications for image generation and facial recognition. What's inside Image classification and object detection Advanced deep learning architectures Transfer learning and generative adversarial networks DeepDream and neural style transfer Visual embeddings and image search About the reader For intermediate Python programmers. About the author Mohamed Elgendy is the VP of Engineering at Rakuten. A seasoned AI expert, he has previously built and managed AI products at Amazon and Twilio. Table of Contents PART 1 - DEEP LEARNING FOUNDATION 1 Welcome to computer vision 2 Deep learning and neural networks 3 Convolutional neural networks 4 Structuring DL projects and hyperparameter tuning PART 2 - IMAGE CLASSIFICATION AND DETECTION 5 Advanced CNN architectures 6 Transfer learning 7 Object detection with R-CNN, SSD, and YOLO PART 3 - GENERATIVE MODELS AND VISUAL EMBEDDINGS 8 Generative adversarial networks (GANs) 9 DeepDream and neural style transfer 10 Visual embeddings
Computer Vision: Algorithms and Applications explores the variety of techniques used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both in specialized applications such as image search and autonomous navigation, as well as for fun, consumer-level tasks that students can apply to their own personal photos and videos. More than just a source of “recipes,” this exceptionally authoritative and comprehensive textbook/reference takes a scientific approach to the formulation of computer vision problems. These problems are then analyzed using the latest classical and deep learning models and solved using rigorous engineering principles. Topics and features: Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses Incorporates totally new material on deep learning and applications such as mobile computational photography, autonomous navigation, and augmented reality Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects Includes 1,500 new citations and 200 new figures that cover the tremendous developments from the last decade Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, estimation theory, datasets, and software Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.