Wastewater treatment is an energy intensive process that removes contaminants and protects the environment. While some wastewater treatment plants (WWTPs) recover a small portion of their energy demand through sludge handling processes, most of the useful energy available from wastewater remains unrecovered. Efforts are underway to harness energy from wastewater by developing microbial fuel cells (MiFCs) that generate electricity. Key challenges to the development of microbial fuel cells include inefficiencies inherent in recovering energy from microbial metabolism (particularly carbon metabolism) and ineffective electron transfer processes between the bacteria and the anode. We explored the prospects for constructing microaerobic nitrifying MiFCs which could exhibit key advantages over carbon-based metabolism in particular applications (e.g., potential use in ammonia-rich recycle streams). In addition, we evaluated nanostructure-enhanced anodes which have the potential to facilitate more efficient electron transfer for MiFCs because carbon nanostructures, such as nanofibers, possess outstanding conducting properties and increase the available surface area for cellular attachment. In the initial phase of this project, we investigated the performance of a novel nitrifying MiFC that contains a nanostructure-enhanced anode and that demonstrated power generation during preliminary batch testing. Subsequent batch runs were performed with pure cultures of Nitrosomonas europaea which demonstrated very low power generation. After validating our fuel cell hardware using abiotic experiments, we proceeded to test the MiFC using a mixed culture from a local wastewater treatment plant, which was enriched for nitrifying bacteria. Again, the power generation was very low though noticeably higher on the nanostructured anodes. After establishing and monitoring the growth of another enriched nitrifying culture, we repeated the experiment a third time, again observing very low power generation. In the absence of appreciable and repeatable power production from pure and mixed nitrifying cultures, we focused on the second major objective of the work which was the fabrication and characterization of carbon nanostructured anodes. The second research objective evaluated whether or not addition of carbon nanostructures to stainless steel anodes in anaerobic microbial fuel cells enhanced electricity generation. The results from the studies focused on this element were very promising and demonstrated that CNS-coated anodes produced up to two orders of magnitude more power in anaerobic microbial fuel cells than in MiFCs with uncoated stainless steel anodes. The largest power density achieved in this study was 506 mW m-2, and the average maximum power density of the CNS-enhanced MiFCs using anaerobic sludge was 300 mW m-2. In comparison, the average maximum power density of the MiFCs with uncoated anodes in the same experiments was only 13.7 mW m-2, an almost 22-fold reduction. Electron microscopy showed that microorganisms were affiliated with the CNS-coated anodes to a much greater degree than the noncoated anodes. Sodium azide inhibition studies showed that active microorganisms were required to achieve enhanced power generation. The current was reduced significantly in MiFCs receiving the inhibitor compared to MiFCs that did not receive the inhibitor. The nature of the microbial-nanostructure relationship that caused enhanced current was not determined during this study but deserves further evaluation. These results are promising and suggest that CNS-enhanced anodes, when coupled with more efficient MiFC designs than were used in this research, may enhance the possibility that MiFC technologies can move to commercial application.
Integrated Environmental Technologies for Wastewater Treatment and Sustainable Development provides comprehensive and advanced information on integrated environmental technologies and their limitations, challenges and potential applications in treatment of environmental pollutants and those that are discharged in wastewater from industrial, domestic and municipal sources. The book covers applied and recently developed integrated technologies to solve five major trends in the field of wastewater treatment, including nutrient removal and resource recovery, recalcitrant organic and inorganic compounds detoxification, energy saving, and biofuel and bioenergy production for environmental sustainability. The book provides future directions to young researchers, scientists and professionals who are working in the field of bioremediation and phytoremediation to remediate wastewater pollutants at laboratory and field scale, for sustainable development. Illustrates the importance of various advanced oxidation processes in effluent treatment plants Describes underlying mechanisms of constructed wetland-microbial fuel cell technologies for the degradation and detoxification of emerging organic and inorganic contaminants discharged in wastewater Highlights the reuse and recycling of wastewater and recovery of value-added resources from wastewater Focuses on recent advances and challenges in integrated environmental technologies, constructed wetland-microbial fuel cell, microbial electrochemical-constructed wetlands, biofilm reactor-constructed wetland, and anammox- microbial fuel cell technology for sustainable development Illustrates the importance of microbes and plants in bio/phytoremediation and wastewater treatment
Industrial wastewater contains a large variety of compounds, such as hazardous organic pollutants, heavy metals, salts and nutrients, which makes its treatment challenging. On the other hand, the sewage treatment with existing technologies is not cost-effective due to high energy demand and contributes to greenhouse gas emission. Thus, the use of conventional water treatment methods is neither sustainable nor always effective. In this sense, BESs has emerged as a promising technology to treat complex industrial wastewater with a sustainable manner. Development in Wastewater Treatment Research and Processes: Bioelectrochemical Systems for Wastewater Management analyses and discusses the potential of microbial and electrochemical based hybrid processes for the treatment of complex industrial wastewater along with the recovery of valuable compounds and water reutilization. The most significant advantages of BES are high effectiveness, low toxicity, gentle operation conditions, environmentally friendly treatment without sludge accumulation and energy conservation. Bioelectrochemical systems (BES) are emerging as an exciting platform to convert chemical energy of organic wastes into electricity or hydrogen or value-added chemical commodities. In addition, recent and future trends in BES are highlighted. Discusses the fundamentals of biological wastewater treatment and bio-electrochemical systems, advantages, limitations and promising solutions of different types of energy recovery options from wastewater Presents the recent trends and developments in BES for achieving the sustainable wastewater treatment Covers the applications of BES and BES-based hybrid treatment technologies for wastewater treatment Includes carbon capture and resource recovery other than energy from wastewater using BES systems Addresses the challenges in the full-scale implementation of BES in existing and new wastewater treatment plants
The rapid growth of global energy consumption and simultaneous waste discharge requires more sustainable energy production and waste disposal/recovery technology. In this respect, microbial fuel cell and bioelectrochemical systems have been highlighted to provide a platform for waste-to-energy and cost-efficient treatment. Microbial fuel cell technology has also contributed to both academia and industry through the development of breakthrough sustainable technologies, enabling cross- and multi-disciplinary approaches in microbiology, biotechnology, electrochemistry, and bioprocess engineering. To further spread these technologies and to help the implementation of microbial fuel cells, this Special Issue, entitled “Microbial Fuel Cells 2018”, was proposed for the international journal Energies. This Special Issue mainly covers original research and studies related to the above-mentioned topic, including, but not limited to, bioelectricity generation, microbial electrochemistry, useful resource recovery, system and process design, and the implementation of microbial fuel cells.
Microbial Fuel Cells (MFCs) are a type of bioelectrochemical system that uses microorganisms to convert organic matter into electrical energy. MFCs can be used in wastewater treatment to remove pollutants while simultaneously generating electricity. In an MFC, bacteria oxidize organic matter in the wastewater, creating electrons that flow through an electrical circuit, producing a current. The electrons also flow to the anode, where they accept protons and create water. The process generates electricity and also cleans the wastewater. The use of MFCs for wastewater treatment and energy production is a relatively new technology and is still under research and development. However, it has the potential to be a sustainable and cost-effective solution for treating wastewater and generating electricity. MFCs have the ability to generate electricity from a wide range of organic matter, such as wastewater from food processing plants, agricultural runoff, and even municipal sewage. This makes them a promising technology for decentralized power generation and treatment of wastewater in remote areas or in areas where a traditional grid connection is not available. Microbial Fuel Cells (MFCs) are a type of bioelectrochemical system that converts chemical energy from organic matter into electrical energy using microorganisms. They are a promising technology for wastewater treatment and energy generation as they can convert organic pollutants present in wastewater into electricity. The basic design of an MFC consists of an anode and cathode compartment separated by a proton exchange membrane. Microorganisms are cultured in the anode compartment, where they oxidize the organic matter present in the wastewater, releasing electrons that flow through an external circuit, generating a current. At the same time, the electrons also flow to the cathode compartment, where they accept protons and create water. This process generates electricity while also cleaning the wastewater. MFCs can be used in a variety of settings, including wastewater treatment plants, food processing facilities, and agricultural operations. They can also be used in remote locations or areas where a traditional grid connection is not available, making them suitable for decentralized power generation. MFCs are still in the research and development phase, but have the potential to be a sustainable and cost-effective solution for treating wastewater and generating electricity. In addition, the technology can be integrated with other sustainable technologies, such as solar power or wind power, to provide a more robust and reliable power source. With the growth of science and technology, the most of the developing and developed countries are facing many challenges like Global warming, water and energy crisis, Seasonal changes, the variation in the production of food grains etc. The increase in population leads to the demand of natural resources all over the world. As the natural resources are getting depleted in a faster manner, some actions have to be initiated for sustainable development. most of the developing countries are deeply helpless to change in water supply. India is one of such countries facing such problem. The heavy increase in water demand and complex consumption patterns are the reasons for such problem.
SUSTAINABLE WATER TREATMENT: ADVANCES AND INTERVENTIONS This outstanding new volume is a compendium of reference material which will cover most of the relevant and state-of-art approaches in the field of water treatment, focusing on technological advances for water treatment in four categories: advanced oxidation technologies, nanoparticles for water treatment, membrane separations, and other emerging technologies or processes. Apart from this perspective, fundamental discussions on a wide variety of pollutants have also been included, such as acidic wastewater treatment, metallurgical wastewater, textile wastewater as well as groundwater. The editors have not only covered a wide range of water treatment techniques, but also focus on their applications, offering a holistic perspective on water treatment in general. Covering all of the latest advances, innovations, and developments in practical applications for sustainable water treatment, this volume represents the most comprehensive, up-to-date coverage of the issues of the day and state of the art. Whether for the veteran engineer or scientist or a student, this volume is a must-have for any library. Sustainable Water Treatment: Advances and Interventions covers: Provides an insight into various sectors of water and wastewater treatment technologies, introducing key technical topics Is a comprehensive guide to technological interventions for water and wastewater treatment Is also a reference book for any elective course on water treatment for engineers, scientists, and students, at both the undergraduate and graduate levels Presents the most current and up-to-date advances in sustainable water treatment Covers key technical topics and gives readers a comprehensive understanding of the latest research findings Includes perspectives on future trends and challenges
Current wastewater treatment technologies are not sustainable simply due to their high operational costs and process inefficiency. Integrated Microbial Fuel Cells for Wastewater Treatment is intended for professionals who are searching for an innovative method to improve the efficiencies of wastewater treatment processes by exploiting the potential of Microbial Fuel Cells (MFCs) technology. The book is broadly divided into four sections. It begins with an overview of the "state of the art" bioelectrochemical systems (BESs) as well as the fundamentals of MFC technology and its potential to enhance wastewater treatment efficiencies and reduce electricity generation cost. In section two, discusses the integration, installation, and optimization of MFC into conventional wastewater treatment processes such as activated sludge process, lagoons, constructed wetlands, and membrane bioreactors. Section three outlines integrations of MFCs into other wastewater processes. The final section provides explorative studies of MFC integrated systems for large scale wastewater treatment and the challenges which are inherent in the upscaling process. Clearly describes the latest techniques for integrating MFC into traditional wastewater treatment processes such as activated sludge process, lagoons, constructed wetlands, and membrane bioreactors Discusses the fundamentals of bioelectrochemical systems for degrading the contaminants from the municipal and industrial wastewater Covers methods for the optimization of integrated systems
Microbial Electrochemical and Fuel Cells: Fundamentals and Applications contains the most updated information on bio-electrical systems and their ability to drive an electrical current by mimicking bacterial interactions found in nature to produce a small amount of power. One of the most promising features of the microbial fuel cell is its application to generate power from wastewater, and its use in the treatment of water to remove contaminants, making it a very sustainable source of power generation that can feasibly find application in rural areas where providing more conventional sources of power is often difficult. The book explores, in detail, both the technical aspects and applications of this technology, and was written by an international team of experts in the field who provide an introduction to microbial fuel cells that looks at their electrochemical principles and mechanisms, explains the materials that can be used for the various sections of the fuel cells, including cathode and anode materials, and provides key analysis of microbial fuel cell performance looking at their usage in hydrogen production, waste treatment, and sensors, amongst other applications. Includes coverage of the types and principles of electrochemical cells Provides information on the construction of fuel cells and appropriate materials Presents the latest on this renewable source of energy and the process for the treatment of waste water
Increased research is going on to explore the new cleaner options for the utilization of natural resources. This book aims to provide the scientific knowhow and orientation in the area of the emerging technologies for utilization of natural resources for sustainable development to the readers. The book includes production of energy and lifesaving drugs using natural resources as well as reduction of wastage of resources like water and energy for sustainable development in both technological as well as modeling aspects.
This book presents new application processes in the context of anaerobic digestion (AD), such as phosphorus recovery, microbial fuel cells (MFCs), and seaweed digestion. In addition, it introduces a new technique for the modeling and optimization of AD processes. Chapters 1 and 2 review AD as a technique for converting a range of organic wastes into biogas, while Chapter 3 discusses the recovery of phosphorus from anaerobically digested liquor. Chapters 4 and 5 focus on new techniques for modeling and optimizing AD. Chapters 6 and 7 then describe the state of the art in AD effluent treatment. The book’s final three chapters focus on more recent developments, including microbial fuel cells (MFCs) (Chapter 8), seaweed production (Chapter 9), and enzyme technologies (Chapter 10).
Progress and Recent Trends in Microbial Fuel Cells provides an in-depth analysis of the fundamentals, working principles, applications and advancements (including commercialization aspects) made in the field of Microbial Fuel Cells research, with critical analyses and opinions from experts around the world. Microbial Fuel cell, as a potential alternative energy harnessing device, has been progressing steadily towards fruitful commercialization. Involvements of electrolyte membranes and catalysts have been two of the most critical factors toward achieving this progress. Added applications of MFCs in areas of bio-hydrogen production and wastewater treatment have made this technology extremely attractive and important. . Reviews and compares MFCs with other alternative energy harnessing devices, particularly in comparison to other fuel cells. Analyses developments of electrolyte membranes, electrodes, catalysts and biocatalysts as critical components of MFCs, responsible for their present and future progress. Includes commercial aspects of MFCs in terms of (i) generation of electricity, (ii) microbial electrolysis cell, (iii) microbial desalination cell, and (iv) wastewater and sludge treatment.
Electrochemical Water Treatment Methods provides the fundamentals and applications of electrochemical water treatment methods to treat industrial effluents. Sections provide an overview of the technology, its current state of development, and how it is making its way into industry applications. Other sections deal with historical developments and the fundamentals of 18 methods, including coupled methods, such as Electrocoagulation, Peroxi-Coagulation and Electro-Fenton treatments. In addition, users will find discussions that relate to industries such as Pulp and Paper, Pharmaceuticals, Textiles, and Urban/Domestic wastewater, amongst others. Final sections present advantages, disadvantages and ways to combine renewable energy sources and electrochemical methods to design sustainable facilities. Environmental and Chemical Engineers will benefit from the extensive collection of methods and industry focused application cases, but researchers in environmental chemistry will also find interesting examples on how methods can be transitioned from lab environments to practical applications. Offers an excellent overview of the research advances and current applications of electrochemical technologies for water treatment Explains, in a comprehensive way, the fundamentals of different electrochemical uses and applications of different technologies Provides a large number of examples as evidence of practical applications of electrochemistry to environmental protection Explores the combination possibilities with other treatment technologies or emerging technologies for destroying water pollutants