Electronic Density Functional Theory

Electronic Density Functional Theory

Author: John F. Dobson

Publisher: Springer Science & Business Media

ISBN: 9781489903167

Category: Science

Page: 396

View: 234

This book is an outcome of the International Workshop on Electronic Density Functional Theory, held at Griffith University in Brisbane, Australia, in July 1996. Density functional theory, standing as it does at the boundary between the disciplines of physics, chemistry, and materials science, is a great mixer. Invited experts from North America, Europe, and Australia mingled with students from several disciplines, rapidly taking up the informal style for which Australia is famous. A list of participants is given at the end of the book. Density functional theory (DFT) is a subtle approach to the very difficult problem of predicting the behavior of many interacting particles. A major application is the study of many-electron systems. This was the workshop theme, embracing inter alia computational chemistry and condensed matter physics. DFT circumvents the more conceptually straightforward (but more computationally intensive) approach in which one solves the many-body Schrodinger equation. It relies instead on rather delicate considerations involving the electron number density. For many years the pioneering work of Kohn and Sham (the Local Density Ap proximation of 1965 and immediate extensions) represented the state of the art in DFT. This approach was widely used for its appealing simplicity and computability, but gave rather modest accuracy. In the last few years there has been a renaissance of interest, quite largely due to the remarkable success of the new generation of gradient functionals whose initiators include invitees to the workshop (Perdew, Parr, Yang).

Theoretical prediction of properties of atomistic systems: Density functional theory and machine learning

Theoretical prediction of properties of atomistic systems: Density functional theory and machine learning

Author: Alexander Lindmaa

Publisher: Linköping University Electronic Press

ISBN: 9789176854860

Category:

Page: 81

View: 100

The prediction of ground state properties of atomistic systems is of vital importance in technological advances as well as in the physical sciences. Fundamentally, these predictions are based on a quantum-mechanical description of many-electron systems. One of the hitherto most prominent theories for the treatment of such systems is density functional theory (DFT). The main reason for its success is due to its balance of acceptable accuracy with computational efficiency. By now, DFT is applied routinely to compute the properties of atomic, molecular, and solid state systems. The general approach to solve the DFT equations is to use a density-functional approximation (DFA). In Kohn-Sham (KS) DFT, DFAs are applied to the unknown exchangecorrelation (xc) energy. In orbital-free DFT on the other hand, where the total energy is minimized directly with respect to the electron density, a DFA applied to the noninteracting kinetic energy is also required. Unfortunately, central DFAs in DFT fail to qualitatively capture many important aspects of electronic systems. Two prime examples are the description of localized electrons, and the description of systems where electronic edges are present. In this thesis, I use a model system approach to construct a DFA for the electron localization function (ELF). The very same approach is also taken to study the non-interacting kinetic energy density (KED) in the slowly varying limit of inhomogeneous electron densities, where the effect of electronic edges are effectively included. Apart from the work on model systems, extensions of an exchange energy functional with an improved KS orbital description are presented: a scheme for improving its description of energetics of solids, and a comparison of its description of an essential exact exchange feature known as the derivative discontinuity with numerical data for exact exchange. An emerging alternative route towards the prediction of the properties of atomistic systems is machine learning (ML). I present a number of ML methods for the prediction of solid formation energies, with an accuracy that is on par with KS DFT calculations, and with orders-of-magnitude lower computational cost.

Density Functional Theory

Density Functional Theory

Author: Reiner M. Dreizler

Publisher: Springer Science & Business Media

ISBN: 9783642861055

Category: Science

Page: 304

View: 821

Density Functional Theory is a rapidly developing branch of many-particle physics that has found applications in atomic, molecular, solid-state and nuclear physics. This book describes the conceptual framework of density functional theory and discusses in detail the derivation of explicit functionals from first principles as well as their application to Coulomb systems. Both non-relativistic and relativistic systems are treated. The connection of density functional theory with other many-body methods is highlighted. The presentation is self-contained; the book is, thus, well suited for a graduate course on density functional theory.

The Fundamentals of Electron Density, Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State

The Fundamentals of Electron Density, Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State

Author: N.I. Gidopoulos

Publisher: Springer Science & Business Media

ISBN: 9789401704090

Category: Science

Page: 227

View: 206

This volume records the proceedings of a Forum on The Fundamentals of Electron Density, Density Matrix and Density Functional Theory in Atoms, Molecules and the Solid State held at the Coseners' House, Abingdon-on-Thames, Oxon. over the period 31st May - 2nd June, 2002. The forum consisted of 26 oral and poster presentations followed by a discussion structure around questions and comments submitted by the participants (and others who had expressed an interest) in advance of the meeting. Quantum mechanics provides a theoretical foundation for our under standing of the structure and properties of atoms, molecules and the solid state in terms their component particles, electrons and nuclei. (Rel ativistic quantum mechanics is required for molecular systems contain ing heavy atoms.) However, the solution of the equations of quantum mechanics yields a function, a wave function, which depends on the co ordinates, both space and spin, of all of the particles in the system. This functions contains much more information than is required to yield the energy or other property.

Density-Functional Theory of Atoms and Molecules

Density-Functional Theory of Atoms and Molecules

Author: Robert G. Parr

Publisher: OUP USA

ISBN: 9780195092769

Category: Political Science

Page: 333

View: 216

Provides an account of the fundamental principles of the density-functional theory of the electronic structure of matter and its applications to atoms and molecules. This book contains a discussion of the chemical potential and its derivatives. It is intended for physicists, chemists, and advanced students in chemistry.

Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems

Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems

Author:

Publisher: Academic Press

ISBN: 9780128130032

Category: Science

Page: 374

View: 346

Novel Electronic Structure Theory: General Innovations and Strongly Correlated Systems, Volume 76, the latest release in the Advances in Quantum Chemistry series presents work and reviews of current work in quantum chemistry (molecules), but also includes scattering from atoms and solid state work of interest in physics. Topics covered in this release include the Present Status of Selected Configuration Interaction with Truncation Energy Error, Recent Developments in Asymptotic Expansions from Numerical Analysis and Approximation Theory, The kinetic energy Pauli enhancement factor and its role in determining the shell structure of atoms and molecules, Numerical Hartree-Fock and Many-Body Calculations for Diatomic Molecules, and more. Provides reports on current work in molecular and atomic quantum mechanics Contains work reported by many of the best scientists in the field Presents the latest release in the Advances in Quantum Chemistry series

Recent Advances in Density Functional Methods

Recent Advances in Density Functional Methods

Author: Delano Pun Chong

Publisher: World Scientific

ISBN: 9810224427

Category: Science

Page: 413

View: 672

Of all the different areas in computational chemistry, density functional theory (DFT) enjoys the most rapid development. Even at the level of the local density approximation (LDA), which is computationally less demanding, DFT can usually provide better answers than Hartree-Fock formalism for large systems such as clusters and solids. For atoms and molecules, the results from DFT often rival those obtained by ab initio quantum chemistry, partly because larger basis sets can be used. Such encouraging results have in turn stimulated workers to further investigate the formal theory as well as the computational methodology of DFT.This volume contains ten contributions from active workers in DFT, covering topics from basic principles to methodology to applications. In the Foreword, Prof Walter Kohn gives his perspective on the recent advances in DFT. Because DFT is being developed in so many different directions, no single volume can provide a complete review of DFT. However, this volume will help both beginners and experimentalists to read the growing DFT literature more easily.

Quantum Systems in Chemistry and Physics. Trends in Methods and Applications

Quantum Systems in Chemistry and Physics. Trends in Methods and Applications

Author: R. McWeeny

Publisher: Springer Science & Business Media

ISBN: 9789401148948

Category: Science

Page: 399

View: 698

Quantum Systems in Chemistry and Physics contains a refereed selection of the papers presented at the first European Workshop on this subject, held at San Miniato, near Pisa, Italy, in April 1996. The Workshop brought together leading experts in theoretical chemistry and molecular physics with an interest in the quantum mechanical many-body problem. This volume provides an insight into the latest research in this increasingly important field. Throughout the Workshop, the emphasis was on innovative theory and conceptual developments rather than on computational implementation. The various contributions presented reflect this emphasis and embrace topics such as density matrices and density functional theory, relativistic formulations, electron correlation, valence theory, nuclear motion, response theory, condensed matter, and chemical reactions. Audience: The volume will be of interest to those working in the molecular sciences and to theoretical chemists and molecular physicists in particular.

Theoretical Modelling of Semiconductor Surfaces

Theoretical Modelling of Semiconductor Surfaces

Author: G. P. Srivastava

Publisher: World Scientific

ISBN: 981023306X

Category: Science

Page: 327

View: 367

The state-of-the-art theoretical studies of ground state properties, electronic states and atomic vibrations for bulk semiconductors and their surfaces by the application of the pseudopotential method are discussed. Studies of bulk and surface phonon modes have been extended by the application of the phenomenological bond charge model. The coverage of the material, especially of the rapidly growing and technologically important topics of surface reconstruction and chemisorption, is up-to-date and beyond what is currently available in book form. Although theoretical in nature, the book provides a good deal of discussion of available experimental results. Each chapter provides an adequate list of references, relevant for both theoretical and experimental studies. The presentation is coherent and self-contained, and is aimed at the postgraduate and postdoctoral levels.

Progress in Physical Chemistry Volume 3

Progress in Physical Chemistry Volume 3

Author: Franz Michael Dolg

Publisher: Oldenbourg Verlag

ISBN: 9783486711639

Category: Science

Page: 429

View: 681

Progress in Physical Chemistry is a collection of recent »Review Articles« published in the »Zeitschrift für Physikalische Chemie«. The third volume of the series "Progress in Physical Chemistry" comprises 27 articles, most of them with review character, written by the members of the Priority Program (SPP) 1145 of the German Research Foundation (DFG).

Modern Density Functional Theory: A Tool For Chemistry

Modern Density Functional Theory: A Tool For Chemistry

Author: P. Politzer

Publisher: Elsevier

ISBN: 0080536700

Category: Science

Page: 404

View: 764

Density Functional Theory (DFT) is currently receiving a great deal of attention as chemists come to realize its important role as a tool for chemistry. This book covers the theoretical principles of DFT, and details its application to several contemporary problems. All current techniques are covered, many are critically assessed, and some proposals for the future are reviewed. The book demonstrates that DFT is a practical solution to the problems standard ab initio methods have with chemical accuracy. The book is aimed at both the theoretical chemist and the experimentalist who want to relate their experiments to the governing theory. It will prove a useful and enduring reference work.