Geometric Computing with Clifford Algebras

Geometric Computing with Clifford Algebras

Author: Gerald Sommer

Publisher: Springer Science & Business Media

ISBN: 9783662046210

Category: Computers

Page: 551

View: 804

This monograph-like anthology introduces the concepts and framework of Clifford algebra. It provides a rich source of examples of how to work with this formalism. Clifford or geometric algebra shows strong unifying aspects and turned out in the 1960s to be a most adequate formalism for describing different geometry-related algebraic systems as specializations of one "mother algebra" in various subfields of physics and engineering. Recent work shows that Clifford algebra provides a universal and powerful algebraic framework for an elegant and coherent representation of various problems occurring in computer science, signal processing, neural computing, image processing, pattern recognition, computer vision, and robotics.

Geometric Algebra Computing

Geometric Algebra Computing

Author: Eduardo Bayro-Corrochano

Publisher: Springer Science & Business Media

ISBN: 9781849961080

Category: Computers

Page: 526

View: 341

This useful text offers new insights and solutions for the development of theorems, algorithms and advanced methods for real-time applications across a range of disciplines. Its accessible style is enhanced by examples, figures and experimental analysis.

Invariant Algebras and Geometric Reasoning

Invariant Algebras and Geometric Reasoning

Author: Hongbo Li

Publisher: World Scientific

ISBN: 9789812770110

Category: Mathematics

Page: 518

View: 601

The demand for more reliable geometric computing in robotics, computer vision and graphics has revitalized many venerable algebraic subjects in mathematics OCo among them, GrassmannOCoCayley algebra and Geometric Algebra. Nowadays, they are used as powerful languages for projective, Euclidean and other classical geometries. This book contains the author and his collaborators' most recent, original development of GrassmannOCoCayley algebra and Geometric Algebra and their applications in automated reasoning of classical geometries. It includes two of the three advanced invariant algebras OCo Cayley bracket algebra, conformal geometric algebra, and null bracket algebra OCo for highly efficient geometric computing. They form the theory of advanced invariants, and capture the intrinsic beauty of geometric languages and geometric computing. Apart from their applications in discrete and computational geometry, the new languages are currently being used in computer vision, graphics and robotics by many researchers worldwide. Sample Chapter(s). Chapter 1: Introduction (252 KB). Contents: Projective Space, Bracket Algebra and GrassmannOCoCayley Algebra; Projective Incidence Geometry with Cayley Bracket Algebra; Projective Conic Geometry with Bracket Algebra and Quadratic Grassmann-Cayley Algebra; Inner-product Bracket Algebra and Clifford Algebra; Geometric Algebra; Euclidean Geometry and Conformal GrassmannOCoCayley Algebra; Conformal Clifford Algebra and Classical Geometries. Readership: Graduate students in discrete and computational geometry, and computer mathematics; mathematicians and computer scientists.

Geometric Computation

Geometric Computation

Author: Falai Chen

Publisher: World Scientific

ISBN: 9789812794833

Category: Computers

Page: 413

View: 733

This book contains tutorial surveys and original research contributions in geometric computing, modeling, and reasoning. Highlighting the role of algebraic computation, it covers: surface blending, implicitization, and parametrization; automated deduction with Clifford algebra and in real geometry; and exact geometric computation. Basic techniques, advanced methods, and new findings are presented coherently, with many examples and illustrations. Using this book the reader will easily cross the frontiers of symbolic computation, computer aided geometric design, and automated reasoning. The book is also a valuable reference for people working in other relevant areas, such as scientific computing, computer graphics, and artificial intelligence. Contents: Algebraic Methods in Computer Aided Geometric Design: Theoretical and Practical Applications (L Gonzilez-Vega et al.); Constructing Piecewise Algebraic Blending Surfaces (Y Feng et al.); Rational Curves and Surfaces: Algorithms and Some Applications (J R Sendra); Panorama of Methods for Exact Implicitization of Algebraic Curves and Surfaces (I S Kotsireas); Implicitization and Offsetting via Regular Systems (D Wang); Determining the Intersection Curve of Two 3D Implicit Surfaces by Using Differential Geometry and Algebraic Techniques (L Gonzilez-Vega et al.); Analytical Properties of Semi-Stationary Subdivision Schemes (H Zhang & G Wang); Meshless Method for Numerical Solution of PDE Using Hermitian Interpolation with Radial Basis (Z Wu & J Liu); Clifford Algebras in Geometric Computation (H Li); Automated Deduction in Real Geometry (L Yang & B Xia); Automated Derivation of Unknown Relations and Determination of Geometric Loci (Y Li); On Guaranteed Accuracy Computation (C K Yap); Dixon A-Resultant Quotients for 6-Point Isosceles Triangular Corner Cutting (M-C Foo & E-W Chionh); Face Recognition Using Hidden Markov Models and Artificial Neural Network Techniques (Z Ou & B Xue). Readership: Upper-level undergraduates, graduate students, researchers and engineers in geometric modeling."

Lectures on Clifford (Geometric) Algebras and Applications

Lectures on Clifford (Geometric) Algebras and Applications

Author: Rafal Ablamowicz

Publisher: Springer Science & Business Media

ISBN: 0817632573

Category: Mathematics

Page: 221

View: 855

The subject of Clifford (geometric) algebras offers a unified algebraic framework for the direct expression of the geometric concepts in algebra, geometry, and physics. This bird's-eye view of the discipline is presented by six of the world's leading experts in the field; it features an introductory chapter on Clifford algebras, followed by extensive explorations of their applications to physics, computer science, and differential geometry. The book is ideal for graduate students in mathematics, physics, and computer science; it is appropriate both for newcomers who have little prior knowledge of the field and professionals who wish to keep abreast of the latest applications.

Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics

Author: Rafal Ablamowicz

Publisher: Springer Science & Business Media

ISBN: 9781461213680

Category: Mathematics

Page: 461

View: 950

The plausible relativistic physical variables describing a spinning, charged and massive particle are, besides the charge itself, its Minkowski (four) po sition X, its relativistic linear (four) momentum P and also its so-called Lorentz (four) angular momentum E # 0, the latter forming four trans lation invariant part of its total angular (four) momentum M. Expressing these variables in terms of Poincare covariant real valued functions defined on an extended relativistic phase space [2, 7J means that the mutual Pois son bracket relations among the total angular momentum functions Mab and the linear momentum functions pa have to represent the commutation relations of the Poincare algebra. On any such an extended relativistic phase space, as shown by Zakrzewski [2, 7], the (natural?) Poisson bracket relations (1. 1) imply that for the splitting of the total angular momentum into its orbital and its spin part (1. 2) one necessarily obtains (1. 3) On the other hand it is always possible to shift (translate) the commuting (see (1. 1)) four position xa by a four vector ~Xa (1. 4) so that the total angular four momentum splits instead into a new orbital and a new (Pauli-Lubanski) spin part (1. 5) in such a way that (1. 6) However, as proved by Zakrzewski [2, 7J, the so-defined new shifted four a position functions X must fulfill the following Poisson bracket relations: (1.

Clifford Algebras and their Applications in Mathematical Physics

Clifford Algebras and their Applications in Mathematical Physics

Author: Rafał Abłamowicz

Publisher: Springer Science & Business Media

ISBN: 0817641823

Category: Mathematics

Page: 461

View: 608

The first part of a two-volume set concerning the field of Clifford (geometric) algebra, this work consists of thematically organized chapters that provide a broad overview of cutting-edge topics in mathematical physics and the physical applications of Clifford algebras. algebras and their applications in physics. Algebraic geometry, cohomology, non-communicative spaces, q-deformations and the related quantum groups, and projective geometry provide the basis for algebraic topics covered. Physical applications and extensions of physical theories such as the theory of quaternionic spin, a projective theory of hadron transformation laws, and electron scattering are also presented, showing the broad applicability of Clifford geometric algebras in solving physical problems. Treatment of the structure theory of quantum Clifford algebras, the connection to logic, group representations, and computational techniques including symbolic calculations and theorem proving rounds out the presentation.

Geometric Computing for Perception Action Systems

Geometric Computing for Perception Action Systems

Author: Eduardo Bayro Corrochano

Publisher: Springer Science & Business Media

ISBN: 9781461301776

Category: Computers

Page: 235

View: 578

After an introduction to geometric algebra, and the necessary math concepts that are needed, the book examines a variety of applications in the field of cognitive systems using geometric algebra as the mathematical system. There is strong evidence that geobetric albegra can be used to carry out efficient computations at all levels in the cognitive system. Geometric algebra reduces the complexity of algebraic expressions and as a result, it improves algorithms both in speed and accuracy. The book is addressed to a broad audience of computer scientists, cyberneticists, and engineers. It contains computer programs to clarify and demonstrate the importance of geometric algebra in cognitive systems.

The Power of Geometric Algebra Computing

The Power of Geometric Algebra Computing

Author: Dietmar Hildenbrand

Publisher: CRC Press

ISBN: 9781000461237

Category: Computers

Page: 202

View: 930

Geometric Algebra is a very powerful mathematical system for an easy and intuitive treatment of geometry, but the community working with it is still very small. The main goal of this book is to close this gap from a computing perspective in presenting the power of Geometric Algebra Computing for engineering applications and quantum computing. The Power of Geometric Algebra Computing is based on GAALOPWeb, a new user-friendly, web-based tool for the generation of optimized code for different programming languages as well as for the visualization of Geometric Algebra algorithms for a wide range of engineering applications. Key Features: Introduces a new web-based optimizer for Geometric Algebra algorithms Supports many programming languages as well as hardware Covers the advantages of high-dimensional algebras Includes geometrically intuitive support of quantum computing This book includes applications from the fields of computer graphics, robotics and quantum computing and will help students, engineers and researchers interested in really computing with Geometric Algebra.

Guide to Geometric Algebra in Practice

Guide to Geometric Algebra in Practice

Author: Leo Dorst

Publisher: Springer Science & Business Media

ISBN: 0857298119

Category: Computers

Page: 458

View: 643

This highly practical Guide to Geometric Algebra in Practice reviews algebraic techniques for geometrical problems in computer science and engineering, and the relationships between them. The topics covered range from powerful new theoretical developments, to successful applications, and the development of new software and hardware tools. Topics and features: provides hands-on review exercises throughout the book, together with helpful chapter summaries; presents a concise introductory tutorial to conformal geometric algebra (CGA) in the appendices; examines the application of CGA for the description of rigid body motion, interpolation and tracking, and image processing; reviews the employment of GA in theorem proving and combinatorics; discusses the geometric algebra of lines, lower-dimensional algebras, and other alternatives to 5-dimensional CGA; proposes applications of coordinate-free methods of GA for differential geometry.

Geometric Algebra with Applications in Science and Engineering

Geometric Algebra with Applications in Science and Engineering

Author: Eduardo Bayro Corrochano

Publisher: Springer Science & Business Media

ISBN: 9781461201595

Category: Mathematics

Page: 592

View: 818

The goal of this book is to present a unified mathematical treatment of diverse problems in mathematics, physics, computer science, and engineer ing using geometric algebra. Geometric algebra was invented by William Kingdon Clifford in 1878 as a unification and generalization of the works of Grassmann and Hamilton, which came more than a quarter of a century before. Whereas the algebras of Clifford and Grassmann are well known in advanced mathematics and physics, they have never made an impact in elementary textbooks where the vector algebra of Gibbs-Heaviside still predominates. The approach to Clifford algebra adopted in most of the ar ticles here was pioneered in the 1960s by David Hestenes. Later, together with Garret Sobczyk, he developed it into a unified language for math ematics and physics. Sobczyk first learned about the power of geometric algebra in classes in electrodynamics and relativity taught by Hestenes at Arizona State University from 1966 to 1967. He still vividly remembers a feeling of disbelief that the fundamental geometric product of vectors could have been left out of his undergraduate mathematics education. Geometric algebra provides a rich, general mathematical framework for the develop ment of multilinear algebra, projective and affine geometry, calculus on a manifold, the representation of Lie groups and Lie algebras, the use of the horosphere and many other areas. This book is addressed to a broad audience of applied mathematicians, physicists, computer scientists, and engineers.

Geometric Computing

Geometric Computing

Author: Eduardo Bayro Corrochano

Publisher: Springer

ISBN: 1848829280

Category: Computers

Page: 622

View: 755

This book offers a gentle introduction to Clifford geometric algebra, an advanced mathematical framework, for applications in perception action systems. Part I, is written in an accessible way allowing readers to easily grasp the mathematical system of Clifford algebra. Part II presents related topics. While Part 3 features practical applications for Computer Vision, Robotics, Image Processing and Neural Computing. Topics and Features include: theory and application of the quaternion Fourier and wavelet transforms, thorough discussion on geometric computing under uncertainty, an entire chapter devoted to the useful conformal geometric algebra, presents examples and hints for the use of public domain computer programs for geometric algebra. The modern framework for geometric computing highlighted will be of great use for communities working on image processing, computer vision, artificial intelligence, neural networks, neuroscience, robotics, control engineering, human and robot interfaces, haptics and humanoids.