A Pick function is a function that is analytic in the upper half-plane with positive imaginary part. In the first part of this book we try to give a readable account of this class of functions as well as one of the standard proofs of the spectral theorem based on properties of this class. In the remainder of the book we treat a closely related topic: Loewner's theory of monotone matrix functions and his analytic continuation theorem which guarantees that a real function on an interval of the real axis which is a monotone matrix function of arbitrarily high order is the restriction to that interval of a Pick function. In recent years this theorem has been complemented by the Loewner-FitzGerald theorem, giving necessary and sufficient conditions that the continuation provided by Loewner's theorem be univalent. In order that our presentation should be as complete and trans parent as possible, we have adjoined short chapters containing the in formation about reproducing kernels, almost positive matrices and certain classes of conformal mappings needed for our proofs.
This book provides an in depth discussion of Loewner’s theorem on the characterization of matrix monotone functions. The author refers to the book as a ‘love poem,’ one that highlights a unique mix of algebra and analysis and touches on numerous methods and results. The book details many different topics from analysis, operator theory and algebra, such as divided differences, convexity, positive definiteness, integral representations of function classes, Pick interpolation, rational approximation, orthogonal polynomials, continued fractions, and more. Most applications of Loewner’s theorem involve the easy half of the theorem. A great number of interesting techniques in analysis are the bases for a proof of the hard half. Centered on one theorem, eleven proofs are discussed, both for the study of their own approach to the proof and as a starting point for discussing a variety of tools in analysis. Historical background and inclusion of pictures of some of the main figures who have developed the subject, adds another depth of perspective. The presentation is suitable for detailed study, for quick review or reference to the various methods that are presented. The book is also suitable for independent study. The volume will be of interest to research mathematicians, physicists, and graduate students working in matrix theory and approximation, as well as to analysts and mathematical physicists.
Concise treatment focuses on theory of shift operators, Toeplitz operators and Hardy classes of vector- and operator-valued functions. Topics include general theory of shift operators on a Hilbert space, use of lifting theorem to give a unified treatment of interpolation theorems of the Pick-Nevanlinna and Loewner types, more. Appendix. Bibliography. 1985 edition.
This volume contains the lecture notes prepared for the AMS Short Course on Matrix Theory and Applications, held in Phoenix in January, 1989. Matrix theory continues to enjoy a renaissance that has accelerated in the past decade, in part because of stimulation from a variety of applications and considerable interplay with other parts of mathematics. In addition, the great increase in the number and vitality of specialists in the field has dispelled the popular misconception that the subject has been fully researched.
This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.
This book presents the proceedings of Positivity VII, held from 22-26 July 2013, in Leiden, the Netherlands. Positivity is the mathematical field concerned with ordered structures and their applications in the broadest sense of the word. A biyearly series of conferences is devoted to presenting the latest developments in this lively and growing discipline. The lectures at the conference covered a broad spectrum of topics, ranging from order-theoretic approaches to stochastic processes, positive solutions of evolution equations and positive operators on vector lattices, to order structures in the context of algebras of operators on Hilbert spaces. The contributions in the book reflect this variety and appeal to university researchers in functional analysis, operator theory, measure and integration theory and operator algebras. Positivity VII was also the Zaanen Centennial Conference to mark the 100th birth year of Adriaan Cornelis Zaanen, who held the chair of Analysis in Leiden for more than 25 years and was one of the leaders in the field during his lifetime.
Handbook of Algebra defines algebra as consisting of many different ideas, concepts and results. Even the nonspecialist is likely to encounter most of these, either somewhere in the literature, disguised as a definition or a theorem or to hear about them and feel the need for more information. Each chapter of the book combines some of the features of both a graduate-level textbook and a research-level survey. This book is divided into eight sections. Section 1A focuses on linear algebra and discusses such concepts as matrix functions and equations and random matrices. Section 1B cover linear dependence and discusses matroids. Section 1D focuses on fields, Galois Theory, and algebraic number theory. Section 1F tackles generalizations of fields and related objects. Section 2A focuses on category theory, including the topos theory and categorical structures. Section 2B discusses homological algebra, cohomology, and cohomological methods in algebra. Section 3A focuses on commutative rings and algebras. Finally, Section 3B focuses on associative rings and algebras. This book will be of interest to mathematicians, logicians, and computer scientists.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This book paints a fresco of the field of extrapolation and rational approximation over the last several centuries to the present through the works of their primary contributors. It can serve as an introduction to the topics covered, including extrapolation methods, Padé approximation, orthogonal polynomials, continued fractions, Lanczos-type methods etc.; it also provides in depth discussion of the many links between these subjects. A highlight of this book is the presentation of the human side of the fields discussed via personal testimonies from contemporary researchers, their anecdotes, and their exclusive remembrances of some of the “actors.” This book shows how research in this domain started and evolved. Biographies of other scholars encountered have also been included. An important branch of mathematics is described in its historical context, opening the way to new developments. After a mathematical introduction, the book contains a precise description of the mathematical landscape of these fields spanning from the 19th century to the first part of the 20th. After an analysis of the works produced after that period (in particular those of Richardson, Aitken, Shanks, Wynn, and others), the most recent developments and applications are reviewed.
A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2B provides a comprehensive look at a number of subjects of complex analysis not included in Part 2A. Presented in this volume are the theory of conformal metrics (including the Poincaré metric, the Ahlfors-Robinson proof of Picard's theorem, and Bell's proof of the Painlevé smoothness theorem), topics in analytic number theory (including Jacobi's two- and four-square theorems, the Dirichlet prime progression theorem, the prime number theorem, and the Hardy-Littlewood asymptotics for the number of partitions), the theory of Fuschian differential equations, asymptotic methods (including Euler's method, stationary phase, the saddle-point method, and the WKB method), univalent functions (including an introduction to SLE), and Nevanlinna theory. The chapters on Fuschian differential equations and on asymptotic methods can be viewed as a minicourse on the theory of special functions.
This book project was initiated at The Tribute Workshop in Honour of Gunnar Sparr and the follow-up workshop Inequalities, Interpolation, Non-commutative, Analysis, Non-commutative Geometry and Applications INANGA08, held at the Centre for Mathematical Sciences, Lund University in May and November of 2008. The resulting book is dedicated in celebration of Gunnar Sparr's sixty-fifth anniversary and more than forty years of exceptional service to mathematics and its applications in engineering and technology, mathematics and engineering education, as well as interdisciplinary, industrial and international cooperation. This book presents new advances in several areas of mathematics and engineering mathematics including applications in modern technology, engineering and life sciences. Thirteen high-quality chapters put forward many new methods and results, reviews of up to date research and open directions and problems for future research. A special chapter by Gunnar Sparr and Georg Lindgren contains a historical account and important aspects of engineering mathematics research and education, and the implementation of the highly successful education programme in Engineering Mathematics at Lund Institute of Technology, where not only the mathematical sciences have played a role. This book will serve as a source of inspiration for a broad spectrum of researchers and research students.
This volume is dedicated to the memory of Harold Widom (1932–2021), an outstanding mathematician who has enriched mathematics with his ideas and ground breaking work since the 1950s until the present time. It contains a biography of Harold Widom, personal notes written by his former students or colleagues, and also his last, previously unpublished paper on domain walls in a Heisenberg–Ising chain. Widom's most famous contributions were made to Toeplitz operators and random matrices. While his work on random matrices is part of almost all the present-day research activities in this field, his work in Toeplitz operators and matrices was done mainly before 2000 and is therefore described in a contribution devoted to his achievements in just this area. The volume contains 18 invited and refereed research and expository papers on Toeplitz operators and random matrices. These present new results or new perspectives on topics related to Widom's work.