Measure Theory and Probability Theory

Measure Theory and Probability Theory

Author: Krishna B. Athreya

Publisher: Springer Science & Business Media

ISBN: 9780387329031

Category: Business & Economics

Page: 618

View: 764

This is a graduate level textbook on measure theory and probability theory. The book can be used as a text for a two semester sequence of courses in measure theory and probability theory, with an option to include supplemental material on stochastic processes and special topics. It is intended primarily for first year Ph.D. students in mathematics and statistics although mathematically advanced students from engineering and economics would also find the book useful. Prerequisites are kept to the minimal level of an understanding of basic real analysis concepts such as limits, continuity, differentiability, Riemann integration, and convergence of sequences and series. A review of this material is included in the appendix. The book starts with an informal introduction that provides some heuristics into the abstract concepts of measure and integration theory, which are then rigorously developed. The first part of the book can be used for a standard real analysis course for both mathematics and statistics Ph.D. students as it provides full coverage of topics such as the construction of Lebesgue-Stieltjes measures on real line and Euclidean spaces, the basic convergence theorems, L^p spaces, signed measures, Radon-Nikodym theorem, Lebesgue's decomposition theorem and the fundamental theorem of Lebesgue integration on R, product spaces and product measures, and Fubini-Tonelli theorems. It also provides an elementary introduction to Banach and Hilbert spaces, convolutions, Fourier series and Fourier and Plancherel transforms. Thus part I would be particularly useful for students in a typical Statistics Ph.D. program if a separate course on real analysis is not a standard requirement. Part II (chapters 6-13) provides full coverage of standard graduate level probability theory. It starts with Kolmogorov's probability model and Kolmogorov's existence theorem. It then treats thoroughly the laws of large numbers including renewal theory and ergodic theorems with applications and then weak convergence of probability distributions, characteristic functions, the Levy-Cramer continuity theorem and the central limit theorem as well as stable laws. It ends with conditional expectations and conditional probability, and an introduction to the theory of discrete time martingales. Part III (chapters 14-18) provides a modest coverage of discrete time Markov chains with countable and general state spaces, MCMC, continuous time discrete space jump Markov processes, Brownian motion, mixing sequences, bootstrap methods, and branching processes. It could be used for a topics/seminar course or as an introduction to stochastic processes. Krishna B. Athreya is a professor at the departments of mathematics and statistics and a Distinguished Professor in the College of Liberal Arts and Sciences at the Iowa State University. He has been a faculty member at University of Wisconsin, Madison; Indian Institute of Science, Bangalore; Cornell University; and has held visiting appointments in Scandinavia and Australia. He is a fellow of the Institute of Mathematical Statistics USA; a fellow of the Indian Academy of Sciences, Bangalore; an elected member of the International Statistical Institute; and serves on the editorial board of several journals in probability and statistics. Soumendra N. Lahiri is a professor at the department of statistics at the Iowa State University. He is a fellow of the Institute of Mathematical Statistics, a fellow of the American Statistical Association, and an elected member of the International Statistical Institute.

Measure Theory and Probability

Measure Theory and Probability

Author: Malcolm Adams

Publisher: Springer Science & Business Media

ISBN: 9781461207795

Category: Mathematics

Page: 206

View: 498

"...the text is user friendly to the topics it considers and should be very accessible...Instructors and students of statistical measure theoretic courses will appreciate the numerous informative exercises; helpful hints or solution outlines are given with many of the problems. All in all, the text should make a useful reference for professionals and students."—The Journal of the American Statistical Association

MEASURE THEORY AND PROBABILITY

MEASURE THEORY AND PROBABILITY

Author: A. K. BASU

Publisher: PHI Learning Pvt. Ltd.

ISBN: 9788120343856

Category: Mathematics

Page: 240

View: 257

This compact and well-received book, now in its second edition, is a skilful combination of measure theory and probability. For, in contrast to many books where probability theory is usually developed after a thorough exposure to the theory and techniques of measure and integration, this text develops the Lebesgue theory of measure and integration, using probability theory as the motivating force. What distinguishes the text is the illustration of all theorems by examples and applications. A section on Stieltjes integration assists the student in understanding the later text better. For easy understanding and presentation, this edition has split some long chapters into smaller ones. For example, old Chapter 3 has been split into Chapters 3 and 9, and old Chapter 11 has been split into Chapters 11, 12 and 13. The book is intended for the first-year postgraduate students for their courses in Statistics and Mathematics (pure and applied), computer science, and electrical and industrial engineering. KEY FEATURES : Measure theory and probability are well integrated. Exercises are given at the end of each chapter, with solutions provided separately. A section is devoted to large sample theory of statistics, and another to large deviation theory (in the Appendix).

Probability and Measure Theory

Probability and Measure Theory

Author: Robert B. Ash

Publisher: Academic Press

ISBN: 0120652021

Category: Mathematics

Page: 516

View: 562

Probability and Measure Theory, Second Edition, is a text for a graduate-level course in probability that includes essential background topics in analysis. It provides extensive coverage of conditional probability and expectation, strong laws of large numbers, martingale theory, the central limit theorem, ergodic theory, and Brownian motion. Clear, readable style Solutions to many problems presented in text Solutions manual for instructors Material new to the second edition on ergodic theory, Brownian motion, and convergence theorems used in statistics No knowledge of general topology required, just basic analysis and metric spaces Efficient organization

Measure Theory

Measure Theory

Author: Donald L. Cohn

Publisher: Springer Science & Business Media

ISBN: 9781489903990

Category: Mathematics

Page: 373

View: 133

Intended as a self-contained introduction to measure theory, this textbook also includes a comprehensive treatment of integration on locally compact Hausdorff spaces, the analytic and Borel subsets of Polish spaces, and Haar measures on locally compact groups. Measure Theory provides a solid background for study in both harmonic analysis and probability theory and is an excellent resource for advanced undergraduate and graduate students in mathematics. The prerequisites for this book are courses in topology and analysis.

Measure Theory

Measure Theory

Author: Donald L. Cohn

Publisher: Birkhäuser

ISBN: 1461469554

Category: Mathematics

Page: 457

View: 993

Intended as a self-contained introduction to measure theory, this textbook also includes a comprehensive treatment of integration on locally compact Hausdorff spaces, the analytic and Borel subsets of Polish spaces, and Haar measures on locally compact groups. This second edition includes a chapter on measure-theoretic probability theory, plus brief treatments of the Banach-Tarski paradox, the Henstock-Kurzweil integral, the Daniell integral, and the existence of liftings. Measure Theory provides a solid background for study in both functional analysis and probability theory and is an excellent resource for advanced undergraduate and graduate students in mathematics. The prerequisites for this book are basic courses in point-set topology and in analysis, and the appendices present a thorough review of essential background material.

Introdction to Measure and Probability

Introdction to Measure and Probability

Author: J. F. C. Kingman

Publisher: Cambridge University Press

ISBN: 9781316582152

Category: Mathematics

Page:

View: 603

The authors believe that a proper treatment of probability theory requires an adequate background in the theory of finite measures in general spaces. The first part of their book sets out this material in a form that not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material (such as the various notions of convergence) which is relevant to probability theory and also the basic theory of L2-spaces, important in modern physics. The second part of the book is an account of the fundamental theoretical ideas which underlie the applications of probability in statistics and elsewhere, developed from the results obtained in the first part. A large number of examples is included; these form an essential part of the development.

A User's Guide to Measure Theoretic Probability

A User's Guide to Measure Theoretic Probability

Author: David Pollard

Publisher: Cambridge University Press

ISBN: 0521002893

Category: Mathematics

Page: 351

View: 859

This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.

Introduction To Probability Theory: A First Course On The Measure-theoretic Approach

Introduction To Probability Theory: A First Course On The Measure-theoretic Approach

Author: Nima Moshayedi

Publisher: World Scientific

ISBN: 9789811243363

Category: Mathematics

Page: 292

View: 642

This book provides a first introduction to the methods of probability theory by using the modern and rigorous techniques of measure theory and functional analysis. It is geared for undergraduate students, mainly in mathematics and physics majors, but also for students from other subject areas such as economics, finance and engineering. It is an invaluable source, either for a parallel use to a related lecture or for its own purpose of learning it.The first part of the book gives a basic introduction to probability theory. It explains the notions of random events and random variables, probability measures, expectation values, distributions, characteristic functions, independence of random variables, as well as different types of convergence and limit theorems. The first part contains two chapters. The first chapter presents combinatorial aspects of probability theory, and the second chapter delves into the actual introduction to probability theory, which contains the modern probability language. The second part is devoted to some more sophisticated methods such as conditional expectations, martingales and Markov chains. These notions will be fairly accessible after reading the first part.

Handbook of Measure Theory

Handbook of Measure Theory

Author: E. Pap

Publisher: Elsevier

ISBN: 0080533094

Category: Mathematics

Page: 1632

View: 893

The main goal of this Handbook is to survey measure theory with its many different branches and its relations with other areas of mathematics. Mostly aggregating many classical branches of measure theory the aim of the Handbook is also to cover new fields, approaches and applications which support the idea of "measure" in a wider sense, e.g. the ninth part of the Handbook. Although chapters are written of surveys in the various areas they contain many special topics and challenging problems valuable for experts and rich sources of inspiration. Mathematicians from other areas as well as physicists, computer scientists, engineers and econometrists will find useful results and powerful methods for their research. The reader may find in the Handbook many close relations to other mathematical areas: real analysis, probability theory, statistics, ergodic theory, functional analysis, potential theory, topology, set theory, geometry, differential equations, optimization, variational analysis, decision making and others. The Handbook is a rich source of relevant references to articles, books and lecture notes and it contains for the reader's convenience an extensive subject and author index.

Measure Theory

Measure Theory

Author: J.L. Doob

Publisher: Springer Science & Business Media

ISBN: 9781461208778

Category: Mathematics

Page: 212

View: 796

This text is unique in accepting probability theory as an essential part of measure theory. Therefore, many examples are taken from probability, and probabilistic concepts such as independence and Markov processes are integrated into the text. Also, more attention than usual is paid to the role of algebras, and the metric defining the distance between sets as the measure of their symmetric difference is exploited more than is customary.