Microbial Fuel Cells 2018

Microbial Fuel Cells 2018

Author: Jung Rae Kim

Publisher: MDPI

ISBN: 9783039215355

Category: Technology & Engineering

Page: 84

View: 513

The rapid growth of global energy consumption and simultaneous waste discharge requires more sustainable energy production and waste disposal/recovery technology. In this respect, microbial fuel cell and bioelectrochemical systems have been highlighted to provide a platform for waste-to-energy and cost-efficient treatment. Microbial fuel cell technology has also contributed to both academia and industry through the development of breakthrough sustainable technologies, enabling cross- and multi-disciplinary approaches in microbiology, biotechnology, electrochemistry, and bioprocess engineering. To further spread these technologies and to help the implementation of microbial fuel cells, this Special Issue, entitled “Microbial Fuel Cells 2018”, was proposed for the international journal Energies. This Special Issue mainly covers original research and studies related to the above-mentioned topic, including, but not limited to, bioelectricity generation, microbial electrochemistry, useful resource recovery, system and process design, and the implementation of microbial fuel cells.

Microbial Fuel Cell

Microbial Fuel Cell

Author: Debabrata Das

Publisher: Springer

ISBN: 3319667920

Category: Technology & Engineering

Page: 506

View: 552

This book represents a novel attempt to describe microbial fuel cells (MFCs) as a renewable energy source derived from organic wastes. Bioelectricity is usually produced through MFCs in oxygen-deficient environments, where a series of microorganisms convert the complex wastes into electrons via liquefaction through a cascade of enzymes in a bioelectrochemical process. The book provides a detailed description of MFC technologies and their applications, along with the theories underlying the electron transfer mechanisms, the biochemistry and the microbiology involved, and the material characteristics of the anode, cathode and separator. It is intended for a broad audience, mainly undergraduates, postgraduates, energy researchers, scientists working in industry and at research organizations, energy specialists, policymakers, and anyone else interested in the latest developments concerning MFCs.

Microbial Fuel Cells for Environmental Remediation

Microbial Fuel Cells for Environmental Remediation

Author: Akil Ahmad

Publisher: Springer Nature

ISBN: 9789811926815

Category: Bioremediation

Page: 453

View: 805

This book comprehensively reviews the key topics in microbial fuel cells (MFC) and its applications in areas related to energy and environmental mitigation. It covers the microbial electrochemistry and the generation of electricity from waste, various synthesis and characterization approaches of polymer-based MFC electrodes, the multifunctional properties of a MFC which allows its simultaneous use as a fuel cell, bioremediation and biosensor device. It provides new direction to the readers to better understand the chemistry in MFC and methods to improve their desired properties. This book is a very valuable reference source for graduates and postgraduates, engineers and research scholars in the areas related to fuel cells electrochemistry and pollution mitigation.

Enzymatic Fuel Cells

Enzymatic Fuel Cells

Author: Inamuddin

Publisher: Materials Research Forum LLC

ISBN: 9781644900062

Category: Technology & Engineering

Page: 196

View: 514

Enzymatic biofuel cells, in contrast to conventional energy systems, use enzymes as catalysts for the conversion of chemical energy into electrical energy. These enzymes can also catalyze fuels such as sucrose, fructose and glucose. In addition to their use as catalysts, they are biocompatible in nature. Due to this fact, enzymatic biofuel cells have many interesting applications, such as implantable gadgets (biosensors, pacemakers, catheters, defibrillators, insulin pumps, self-controlled artificial muscles etc.). The book presents various aspects of biofuel cells including fuel cell electrochemistry, use of enzyme and enzyme immobilization techniques, use of materials such as mesoporous materials, graphene composites, conducting polymer composites and applications of biofuel cells.

Integrated Microbial Fuel Cells for Wastewater Treatment

Integrated Microbial Fuel Cells for Wastewater Treatment

Author: Rouzbeh Abbassi

Publisher: Butterworth-Heinemann

ISBN: 9780128174944

Category: Business & Economics

Page: 392

View: 169

Current wastewater treatment technologies are not sustainable simply due to their high operational costs and process inefficiency. Integrated Microbial Fuel Cells for Wastewater Treatment is intended for professionals who are searching for an innovative method to improve the efficiencies of wastewater treatment processes by exploiting the potential of Microbial Fuel Cells (MFCs) technology. The book is broadly divided into four sections. It begins with an overview of the "state of the art" bioelectrochemical systems (BESs) as well as the fundamentals of MFC technology and its potential to enhance wastewater treatment efficiencies and reduce electricity generation cost. In section two, discusses the integration, installation, and optimization of MFC into conventional wastewater treatment processes such as activated sludge process, lagoons, constructed wetlands, and membrane bioreactors. Section three outlines integrations of MFCs into other wastewater processes. The final section provides explorative studies of MFC integrated systems for large scale wastewater treatment and the challenges which are inherent in the upscaling process. Clearly describes the latest techniques for integrating MFC into traditional wastewater treatment processes such as activated sludge process, lagoons, constructed wetlands, and membrane bioreactors Discusses the fundamentals of bioelectrochemical systems for degrading the contaminants from the municipal and industrial wastewater Covers methods for the optimization of integrated systems

Microbial Fuel Cells

Microbial Fuel Cells

Author: Inamuddin

Publisher: Materials Research Forum LLC

ISBN: 9781644900116

Category: Technology & Engineering

Page: 364

View: 170

Microbial fuel cells are very promising as renewable energy sources. They are based on the direct conversion of organic or inorganic materials to electricity by utilizing microorganisms as catalysts. These cells are well suited for applications that require only low power, e.g. ultracapacitors, toys, electronic gadgets, meteorological buoys, remote sensors, digital wristwatches, smartphones and hardware in space and robots. In addition to electricity generation, microbial fuel cells can be used for wastewater treatment, desalination and biofuel production. The book addresses characterization techniques and operating conditions of microbial fuel cells, as well as the usefulness of various types of anode and cathode materials.

Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 3

Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 3

Author: Jastin Samuel

Publisher: Elsevier

ISBN: 9780323910668

Category: Science

Page: 342

View: 373

Relationship Between Microbes and Environment for Sustainable Ecosystem Services, Volume Three: Microbial Tools for Sustainable Ecosystem Services promotes advances in sustainable solutions, value-added products, and fundamental research in microbes and the environment. Topics include advanced and recent developments in the use of microbes for sustainable development. Volume Three includes concepts and applications of microbes in ecosystem services, with a focus on sustainable practices. The book will include case studies and utility of microbes on both geographical and production system-wide considerations. This book provides reference information ranging from the description of various microbial applications for the sustainability in different aspects of food, energy, environment industry and social development. This book will be helpful to environmental biotechnology scientists, industrial professionals and experts working in the field of microbiology. Covers the latest developments, recent applications and future research avenues in microbial biotechnology for sustainable development Includes expressive tables and figures with concise information about sustainable ecosystem services Provides a wide variety of applications and modern practices of harnessing the potential of microbes in the environment

Advances in Bioenergy and Microfluidic Applications

Advances in Bioenergy and Microfluidic Applications

Author: Mohammad Reza Rahimpour

Publisher: Elsevier

ISBN: 9780128226346

Category: Technology & Engineering

Page: 488

View: 902

Since fossil fuels suffer from dangerous side effects for the environment and their resources are limited, bioenergy attracted many attentions in various aspects as an alternative solution. Therefore, increasing number of researches are conducted every year and the processes updated frequently to make them more economic and industrially beneficial. Advances in Bioenergy and Microfluidic Applications reviews recent developments in this field and covers various advanced bio-applications, which rarely are reviewed elsewhere. The chapters are started from converting biomass to valuable products and continues with applications of biomass in water-treatment, novel sorbents and membranes, refineries, microfluidic devices and etc. The book covers various routes for gaining bioenergy from biomass. Their composition, carbon contents, heat production capacities and other important factors are reviewed in details in different chapters. Then, the processes for upgrading them directly and indirectly (using metabolic engineering and ultrasonic devices) to various fuels are explained. Each process is reviewed both technically and economically and the product analysis is given. Besides, the effect of various catalysts on increasing selectivity and productivity are taken into account. Biofuels are compared with fossil fuels and challenges in the way of bioenergy production are explained. Moreover, advanced bio-applications in membranes, adsorption, waste water treatment, microfluidic devices and etc. are introduced. This book provides a good insight about such bioprocesses and microfluidics devices for researchers, students, professors and related departments and industries that care about energy resources and curious about recent advances in related methods and technologies. Despite other books which review biomass chemistry and conversion, the current book emphasize on the application of biomass in the mentioned areas. Therefore, one can gain a better and more comprehensive insight by reading the book. Describes energy production from biomass, biomass conversion, their advantages and limitations Describes the application of biomass in membranes, sorbents, water-treatment, refineries, and microfluidic devices Offers a future outlook of bioenergy production and possibility to apply in the industries

Nanotechnology in Fuel Cells

Nanotechnology in Fuel Cells

Author: Huaihe Song

Publisher: Elsevier

ISBN: 9780323897914

Category: Technology & Engineering

Page: 480

View: 507

Nanotechnology in Fuel Cells focuses on the use of nanotechnology in macroscopic and nanosized fuel cells to enhance their performance and lifespan. The book covers the fundamental design concepts and promising applications of nanotechnology-enhanced fuel cells and their advantages over traditional fuel cells in portable devices, including longer shelf life and lower cost. In the case of proton-exchange membrane fuel cells (PEMFCs), nano-membranes could provide 100 times higher conductivity of hydrogen ions in low humidity conditions than traditional membranes. For hydrogen fuel cell, nanocatalysts (Pt hybrid nanoparticles) could provide 12 times higher catalytic activity. This is an important reference source for materials scientists and engineers who are looking to understand how nanotechnology is being used to create more efficient macro- and nanosized fuel cells. Outlines how fuel cells can be nanoengineered to enhance their performance and lifespan Covers a variety of fuel cell types, including proton-exchange membrane fuel cells and hydrogen-based fuel cells Assesses the major challenges of nanoengineering fuel cells at an industrial scale

Electrolysis Processes

Electrolysis Processes

Author: Tanja Vidakovic-Koch

Publisher: MDPI

ISBN: 9783039363865

Category: Technology & Engineering

Page: 178

View: 638

Renewable energies such as solar, hydro or wind power are abundant in principle but subject to strong fluctuations. Therefore, development of new technologies for storage of these renewable energies is of special interest. Electrochemical technologies are ideal candidates for the use of excess current; consequently, an increased electrification of chemical processes is expected. In this respect, there are different pathways to utilize excess current electrochemically. Perhaps the most accepted and discussed solutions involve intermediate energy storage in either chemical energy carriers (such as hydrogen via water electrolysis) or electrochemical energy storage devices (like batteries). Additionally, excess current can put to other uses, such for solutions to environmental issues or for construction purposes, rather than being stored for later use.

Advanced Technology for the Conversion of Waste into Fuels and Chemicals

Advanced Technology for the Conversion of Waste into Fuels and Chemicals

Author: Anish Khan

Publisher: Woodhead Publishing

ISBN: 9780128235270

Category: Science

Page: 538

View: 918

Advanced Technology for the Conversion of Waste into Fuels and Chemicals: Volume 1: Biological Processes presents advanced and combined techniques that can be used to convert waste to energy, including combustion, gasification, paralysis, anaerobic digestion and fermentation. The book focuses on solid waste conversion to fuel and energy and presents the latest advances in the design, manufacture, and application of conversion technologies. Contributors from the fields of physics, chemistry, metallurgy, engineering and manufacturing present a truly trans-disciplinary picture of the field. Chapters cover important aspects surrounding the conversion of solid waste into fuel and chemicals, describing how valuable energy can be recouped from various waste materials. As huge volumes of solid waste are produced globally while huge amounts of energy are produced from fossil fuels, the technologies described in this comprehensive book provide the information necessary to pursue clean, sustainable power from waste material. Presents the latest advances in waste to energy techniques for converting solid waste to valuable fuel and energy Brings together contributors from physics, chemistry, metallurgy, engineering and the manufacturing industry Includes advanced techniques such as combustion, gasification, paralysis, anaerobic digestion and fermentation Goes far beyond municipal waste, including discussions on recouping valuable energy from a variety of industrial waste materials Describes how waste to energy technologies present an enormous opportunity for clean, sustainable energy

Application of Microbes in Environmental and Microbial Biotechnology

Application of Microbes in Environmental and Microbial Biotechnology

Author: Inamuddin

Publisher: Springer Nature

ISBN: 9789811622250

Category: Science

Page: 736

View: 298

This comprehensive edited book on microbial prospective discusses the innovative approaches and investigation strategies, as well as provides a broad spectrum of the cutting-edge research on the processing, properties and technological developments of microbial products and their applications. Microbes finds very important applications in our lives including industries and food processing. They are widely used in the fermentation of beverages, processing of dairy products, production of pharmaceuticals, chemicals, enzymes, proteins and biomaterials; conversion of biomass into fuel, fuel cell technology, health and environmental sectors. Some of these products are produced commercially, while others are potentially valuable in biotechnology. Microorganisms are considered invaluable in research as model organisms. This is a useful compilation for students and researchers in microbiology, biotechnology and chemical industries.