Progress and Recent Trends in Microbial Fuel Cells

Progress and Recent Trends in Microbial Fuel Cells

Author: Patit Paban Kundu

Publisher: Elsevier

ISBN: 9780444640185

Category: Technology & Engineering

Page: 464

View: 573

Progress and Recent Trends in Microbial Fuel Cells provides an in-depth analysis of the fundamentals, working principles, applications and advancements (including commercialization aspects) made in the field of Microbial Fuel Cells research, with critical analyses and opinions from experts around the world. Microbial Fuel cell, as a potential alternative energy harnessing device, has been progressing steadily towards fruitful commercialization. Involvements of electrolyte membranes and catalysts have been two of the most critical factors toward achieving this progress. Added applications of MFCs in areas of bio-hydrogen production and wastewater treatment have made this technology extremely attractive and important. . Reviews and compares MFCs with other alternative energy harnessing devices, particularly in comparison to other fuel cells. Analyses developments of electrolyte membranes, electrodes, catalysts and biocatalysts as critical components of MFCs, responsible for their present and future progress. Includes commercial aspects of MFCs in terms of (i) generation of electricity, (ii) microbial electrolysis cell, (iii) microbial desalination cell, and (iv) wastewater and sludge treatment.

Conjugated Polymers for Next-Generation Applications, Volume 1

Conjugated Polymers for Next-Generation Applications, Volume 1

Author: Vijay Kumar

Publisher: Woodhead Publishing

ISBN: 9780128236345

Category: Technology & Engineering

Page: 614

View: 940

Conjugated Polymers for Next-Generation Applications, Volume One: Synthesis, Properties and Optoelectrochemical Devices describes the synthesis and characterization of varied conjugated polymeric materials and their key applications, including active electrode materials for electrochemical capacitors and lithium-ion batteries, along with new ideas of functional materials for next-generation high-energy batteries, a discussion of common design procedures, and the pros and cons of conjugated polymers for certain applications. The book’s emphasis lies in the underlying electronic properties of conjugated polymers, their characterization and analysis, and the evaluation of their effectiveness for utilization in energy and electronics applications. This book is ideal for researchers and practitioners in the area of materials science, chemistry and chemical engineering. Provides an overview of the synthesis and functionalization of conjugated polymers and their composites Reviews important photovoltaics applications of conjugated polymeric materials, including their use in energy storage, batteries and optoelectronic devices Discusses conjugated polymers and their application in electronics for sensing, bioelectronics, memory, and more

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems

Author: A. Pandikumar

Publisher: Elsevier

ISBN: 9780128227695

Category: Technology & Engineering

Page: 542

View: 199

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems gathers and reviews developments within the field of nanostructured functional materials towards energy conversion and storage. Contributions from leading research groups involved in interdisciplinary research in the fields of chemistry, physics and materials science and engineering are presented. Chapters dealing with the development of nanostructured materials for energy conversion processes, including oxygen reduction, methanol oxidation, oxygen evolution, hydrogen evolution, formic acid oxidation and solar cells are discussed. The work concludes with a look at the application of nanostructured functional materials in energy storage system, such as supercapacitors and batteries. With its distinguished international team of expert contributors, this book will be an indispensable tool for anyone involved in the field of energy conversion and storage, including materials engineers, scientists and academics. Covers the importance of energy conversion and storage systems and the application of nanostructured functional materials toward energy-relevant catalytic processes Discusses the basic principles involved in energy conversion and storage systems Presents the role of nanostructured functional materials in the current scenario of energy-related research and development

Advances in Waste-to-Energy Technologies

Advances in Waste-to-Energy Technologies

Author: Rajeev Pratap Singh

Publisher: CRC Press

ISBN: 9780429751806

Category: Science

Page: 298

View: 404

As global populations continue to increase, the application of biotechnological processes for disposal and control of waste has gained importance in recent years. Advances in Waste-to-Energy Technologies presents the latest developments in the areas of solid waste management, Waste-to-Energy (WTE) technologies, biotechnological approaches, and their global challenges. It combines biotechnological procedures, sophisticated modeling, and techno-economic analysis of waste, and examines the current need for the maximum recovery of energy from wastes as well as the associated biotechnological and environmental impacts. Features: Presents numerous waste management practices and methods to recover resources from waste using the best biotechnological approaches available. Addresses the challenges, management, and policy issues of waste management and WTE initiatives. Includes practical case studies from around the world. Serves as a useful resource for professionals and students involved in cross-disciplinary and trans-disciplinary research programs and related courses. Discusses the economic and regulatory contexts for managing waste. This book will serve as a valuable reference for researchers, academicians, municipal authorities, government bodies, waste managers, building engineers, and environmental consultants requiring an understanding of waste management and the latest WTE technologies.

Handbook of Biofuels

Handbook of Biofuels

Author: Sanjay Sahay

Publisher: Academic Press

ISBN: 9780128231333

Category: Science

Page: 690

View: 900

Handbook of Biofuels looks at the many new developments in various type of bioenergy, along with the significant constraints in their production and/or applications. Beyond introducing current approaches and possible future directions of research, this title covers sources and processing of raw materials to downstream processing, constraints involved and research approaches to address and overcome these needs. Different combinations of products from the biorefinery are included, along with the material to answer questions surrounding the optimum process conditions for conversion of different feedstocks to bioenergy, the basis for choosing conversion technology, and what bioenergy products make economic sense. With chapters on the techno-economic analysis of biofuel production and concepts and step-by-step approaches in bioenergy processing, the objective of this book is to present a comprehensive and all-encompassing reference about bioenergy to students, teachers, researchers and professionals. Reviews all existing and emerging technologies surrounding the production of advanced biofuels, including biodiesel and bioethanol Includes biofuel applications with compatible global application case studies Offers new pathways for converting biomass

Microbial Electrochemical Technologies

Microbial Electrochemical Technologies

Author: Sonia M. Tiquia-Arashiro

Publisher: CRC Press

ISBN: 9780429945007

Category: Science

Page: 508

View: 227

This book encompasses the most updated and recent account of research and implementation of Microbial Electrochemical Technologies (METs) from pioneers and experienced researchers in the field who have been working on the interface between electrochemistry and microbiology/biotechnology for many years. It provides a holistic view of the METs, detailing the functional mechanisms, operational configurations, influencing factors governing the reaction process and integration strategies. The book not only provides historical perspectives of the technology and its evolution over the years but also the most recent examples of up-scaling and near future commercialization, making it a must-read for researchers, students, industry practitioners and science enthusiasts. Key Features: Introduces novel technologies that can impact the future infrastructure at the water-energy nexus. Outlines methodologies development and application of microbial electrochemical technologies and details out the illustrations of microbial and electrochemical concepts. Reviews applications across a wide variety of scales, from power generation in the laboratory to approaches. Discusses techniques such as molecular biology and mathematical modeling; the future development of this promising technology; and the role of the system components for the implementation of bioelectrochemical technologies for practical utility. Explores key challenges for implementing these systems and compares them to similar renewable energy technologies, including their efficiency, scalability, system lifetimes, and reliability.

Proton Exchange Membrane Fuel Cells

Proton Exchange Membrane Fuel Cells

Author: Inamuddin

Publisher: John Wiley & Sons

ISBN: 9781119829331

Category: Technology & Engineering

Page: 436

View: 791

PROTON EXCHANGE MEMBRANE FUEL CELLS Edited by one of the most well-respected and prolific engineers in the world and his team, this book provides a comprehensive overview of hydrogen production, conversion, and storage, offering the scientific literature a comprehensive coverage of this important fuel. Proton exchange membrane fuel cells (PEMFCs) are among the most anticipated stationary clean energy devices in renewable and alternative energy. Despite the appreciable improvement in their cost and durability, which are the two major commercialization barriers, their availability has not matched demand. This is mainly due to the use of expensive metal-catalyst, less durable membranes, and poor insight into the ongoing phenomena inside proton exchange membrane fuel cells. Efforts are being made to optimize the use of precious metals as catalyst layers or find alternatives that can be durable for more than 5000 hours. Computational models are also being developed and studied to get an insight into the shortcomings and provide solutions. The announcement by various companies that they will be producing proton exchange membrane fuel cells-based cars by 2025 has accelerated the current research on proton exchange membrane fuel cells. The breakthrough is urgently needed. The membranes, catalysts, polymer electrolytes, and especially the understanding of diffusion layers, need thorough revision and improvement to achieve the target. This exciting breakthrough volume explores these challenges and offers solutions for the industry. Whether for the student, veteran engineer, new hire, or other industry professionals, this is a must-have for any library.

Advanced Materials and Technologies for Fuel Cells

Advanced Materials and Technologies for Fuel Cells

Author: Massimo Viviani

Publisher: MDPI

ISBN: 9783036505381

Category: Technology & Engineering

Page: 196

View: 490

Fuel cells are expected to play a relevant role in the transition towards a sustainable-energy-driven world. Although this type of electrochemical system was discovered a long time ago, only in recent years has global energy awareness, together with newly developed materials and available technologies, made such key advances in relation to fuel cell potential and its deployment. It is now unquestionable that fuel cells are recognized, alongside their possibility to work in the reverse mode, as the hub of the new energy deal. Now the questions are, why are they not yet ready to be used, despite the strong economic support given from the society? What prevents them from being entered into the hydrogen energy scenario in which renewable sources will provide energy when it is not readily available? How much are researchers involved in this urgent step towards change? This book gives a clear answer, engaging with some of the open issues that explain the delay of fuel cell deployment and, at the same time, it opens a window that shows how wide and attractive the opportunities offered by this technology are. Papers collected here are not only specialist-oriented but also offer a clear landscape to curious readers and show how challenging the road to the future is.

Direct Methanol Fuel Cell Technology

Direct Methanol Fuel Cell Technology

Author: Kingshuk Dutta

Publisher: Elsevier

ISBN: 9780128191590

Category: Technology & Engineering

Page: 564

View: 705

Direct Methanol Fuel Cell Technology presents the overall progress witnessed in the field of DMFC over the past decade, highlighting the components, materials, functions, properties and features, designs and configurations, operations, modelling, applications, pros and cons, social, political and market penetration, economics and future directions. The book discusses every single aspect of DMFC device technology, the associated advantages and drawbacks of state-of-the-art materials and design, market opportunities and commercialization aspects, and possible future directions of research and development. This book, containing critical analyses and opinions from experts around the world, will garner considerable interest among actual users/scientists/experts. Analyzes developments of membrane electrolytes, electrodes, catalysts, catalyst supports, bipolar plates, gas diffusion layers and flow channels as critical components of direct methanol fuel cells Includes modeling of direct methanol fuel cells to understand their scaling up potentials Discusses commercial aspects of direct methanol fuel cells in terms of market penetration, end application, cost, viability, reliability, social and commercial perception, drawbacks and prospects

Emerging Nanostructured Materials for Energy and Environmental Science

Emerging Nanostructured Materials for Energy and Environmental Science

Author: Saravanan Rajendran

Publisher: Springer

ISBN: 9783030044749

Category: Science

Page: 565

View: 743

This book provides the fundamental aspects of the diverse ranges of nanostructured materials (0D, 1D, 2D and 3D) for energy and environmental applications in a comprehensive manner written by specialists who are at the forefront of research in the field of energy and environmental science. Experimental studies of nanomaterials for aforementioned applications are discussed along with their design, fabrication and their applications, with a specific focus on catalysis, energy storage and conversion systems. This work also emphasizes the challenges of past developments and directions for further research. It also looks at details pertaining to the current ground – breaking of nanotechnology and future perspectives with a multidisciplinary approach to energy and environmental science and informs readers about an efficient utilization of nanomaterials to deliver solutions for the public.

Biological Fuel Cells

Biological Fuel Cells

Author: Mostafa Rahimnejad

Publisher: Elsevier

ISBN: 9780323857123

Category: Science

Page: 510

View: 885

Biological Fuel Cells: Fundamental to Applications offers a comprehensive update on the latest microbial fuel cells technologies and their systems development and implementation. Taking a practical approach to MFCs, the book provides guidance on analytical methods and tools, economic and performance analyses of various technologies and systems, and engineering aspects. Established and newly developed technologies are presented alongside their applications within the context of cost, practicality and future technologies, which are discussed within the context of other renewable energy systems. This book is a comprehensive reference for users working in the field of fuel cells, microbial fuel cells and bioenergy. Presents lab-scale case studies and real-world application on microbial fuel cells Provides the fundamental theories and concepts behind MFCs, along with the latest technologies Offers guidance on economic and cost analyses for technologies and systems within each chapter

Recent Trends in Chemistry and Futuristic Catalysts

Recent Trends in Chemistry and Futuristic Catalysts

Author: Dr. Azad Kumar

Publisher: THNAUJ INTERNATIONAL PUBLISHERS

ISBN: 9788195519637

Category: Antiques & Collectibles

Page: 201

View: 635

This book includes a wide variety of topics that represent the diversity of current chemistry and catalysis developments. It features cutting-edge research from some of the world's smartest and most well-known experts. Contributions vary from creative uses of current approaches to new methods to help readers comprehend. Catalysis is a not often used expression in everyday life, but it plays a major role in our existence. Only the catalytic activity of enzymes allows the human body to function. In addition, the synthesis of ammonia fertiliser is a significant achievement in the realm of catalysis with significant societal implications. Catalysts have gotten a lot of interest because they can be used to make sustainable energy, fuels, and value-added compounds. This book examines some of the underlying challenges surrounding various developments in new catalytic systems and designs, as well as their applications. The book provides an overview about the greatness that lies in the recent progress in chemistry.