Although nanotechnology has revolutionized fields such as medicine, genetics, biology, bioengineering, mechanics, and chemistry, its increasing application in the food industry is relatively recent in comparison. Nanotechnology in the food industry is now being explored for creating new flavors, extending food shelf life, and improving food protection and nutritional value, as well as for intelligent nutrient delivery systems, “smart” foods, contaminant detection nanodevices and nanosensors, advanced food processing, antimicrobial chemicals, encapsulation, and green nanomaterials. This new three-volume set addresses a multitude of topical issues and new developments in the field. Volume 1 focuses on food preservation, food packaging, and sustainable agriculture, while Volume 2 looks at nanotechnology in food process engineering, applications of biomaterials in food products, and the use of modern nanotechnology for human health. The third volume explores the newest trends in nanotechnology for food applications for improving food delivery systems. Together, these three volumes provide a comprehensive and in-depth look at the emerging status of nanotechnology in the food processing industry, explaining the benefits and drawbacks of various methodologies that will aid in the improvement and development of food product sourcing and food hygiene monitoring methods. Volume 1 discusses emerging nanotechnolgical applications in food processing, packaging, and preservation. It focuses on using nanoparticles for safe and nutritional food production, protecting crops from pests, increasing nutritional value, and providing solutions for various environmental issues. This book especially deals with nanotechnology for controlling plant pathogens, food packaging and preservation, agricultural productivity, wastewater treatment, and bioenergy production. Volume 2 discusses nanotechnology use in non-thermal techniques such as high-pressure processing (HPP), pulsed electric fields (PEFs), pulsed light, ultraviolet, microwave, ohmic heating, electrospinning, and nano- and microencapsulation. This volume looks at the role and application of minimal processing techniques such as ozone treatment, vacuum drying, osmotic dehydration, dense phase carbon dioxide treatment, and high-pressure assisted freezing. The successful applications of nanotechnologies on juices, meat and fish, fruits and vegetable slices, food surface, purees, milk and milk products, extraction, drying enhancement, and encapsulation of micro-macro nutrients are also considered. The volume also presents several computer-aided techniques that are emerging in the food processing sector, such as robotics, radio frequency identification (RFID), three-dimensional food printing, artificial intelligence, etc. Significant role of food properties in design of specific food and edible packaging films have been elucidated. Nanotechnology Horizons in Food Process Engineering: Volume 3: Trends, Nanomaterials, and Food Delivery provides an overview of the current trends in nanotechnology for food applications and food delivery systems. Topics include a collection of chapters on diverse topics, including the stability of nanoparticles in food, nanobiosensing for the detection of food contaminants, nanotechnology applications in agriculture, the role of nanotechnology in nutrient delivery, how nanotechnology is applied in dairy products, biofunctional magnetic nanoparticles in food safety, the development of nutraceuticals using nanotechnological tools, and more.
Nanotechnology in Sustainable Agriculture presents applications of nanobiotechnology for eco-friendly agriculture practices. Implementing sustainable agriculture techniques is a crucial component in meeting projected global food demands while minimising toxic waste in the environment. Nano-technological tools – including nanoparticles, nanocapsules, nanotubes and nanomolecules – offer sustainable options to modernise agriculture systems. Written by nanotechnology experts, this book outlines how nano-formulations can improve yield without reliance on chemecial pesticides and reduce nutrient losses in fertilization. It reveals how nanotools are used for rapid disease diagnostics, in treating plant diseases and enhancing the capacity for plants to absorb nutrients. Features: Combines nanotechnology and agronomy presenting applications for improving plant performance and yields. Reveals nanotechnology-based products used for the soil and plant health management which mitigate climate change. Discusses roles of microbial endophytes, heavy metal nanoparticles and environment health, nano-nutrients, phytochemicals, green bioengineering and plant health. This book appeals to professionals working in the agriculture and food industry, as well as agricultural scientists and researchers in nanotechnology and agronomy.
Food process engineering, a branch of both food science and chemical engineering, has evolved over the years since its inception and still is a rapidly changing discipline. While traditionally the main objective of food process engineering was preservation and stabilization, the focus today has shifted to enhance health aspects, flavour and taste, nutrition, sustainable production, food security and also to ensure more diversity for the increasing demand of consumers. The food industry is becoming increasingly competitive and dynamic, and strives to develop high quality, freshly prepared food products. To achieve this objective, food manufacturers are today presented with a growing array of new technologies that have the potential to improve, or replace, conventional processing technologies, to deliver higher quality and better consumer targeted food products, which meet many, if not all, of the demands of the modern consumer. These new, or innovative, technologies are in various stages of development, including some still at the R&D stage, and others that have been commercialised as alternatives to conventional processing technologies. Food process engineering comprises a series of unit operations traditionally applied in the food industry. One major component of these operations relates to the application of heat, directly or indirectly, to provide foods free from pathogenic microorganisms, but also to enhance or intensify other processes, such as extraction, separation or modification of components. The last three decades have also witnessed the advent and adaptation of several operations, processes, and techniques aimed at producing high quality foods, with minimum alteration of sensory and nutritive properties. Some of these innovative technologies have significantly reduced the thermal component in food processing, offering alternative nonthermal methods. Food Processing Technologies: A Comprehensive Review covers the latest advances in innovative and nonthermal processing, such as high pressure, pulsed electric fields, radiofrequency, high intensity pulsed light, ultrasound, irradiation and new hurdle technology. Each section will have an introductory article covering the basic principles and applications of each technology, and in-depth articles covering the currently available equipment (and/or the current state of development), food quality and safety, application to various sectors, food laws and regulations, consumer acceptance, advancements and future scope. It will also contain case studies and examples to illustrate state-of-the-art applications. Each section will serve as an excellent reference to food industry professionals involved in the processing of a wide range of food categories, e.g., meat, seafood, beverage, dairy, eggs, fruits and vegetable products, spices, herbs among others.
Nanotechnology Applications for Food Safety and Quality Monitoring brings together nanotechnology science-based research for food safety and quality monitoring. With the advancement in knowledge about behavior of nano-engineered materials in food and its toxicity, the application of nanotechnology is expected to reach unprecedented levels in achieving food safety. Currently, there is no practical resource of nanotechnology as a tool specifically for monitoring safety and quality. This is a practical, concise, applications-based reference that is essential for food industry researchers and scientists to monitor the safety and quality of food to ensure quality food supplies. Demonstrates how nanotechnology can improve food safety and quality Shows how nanotechnology sensors can be used for food pesticides, pathogens and microbes Discusses the benefits and risks of nanotechnology applications for food safety
Agri-Waste and Microbes for Production of Sustainable Nanomaterials assesses the most recent trends used to produce bionanomaterials from agricultural waste and microorganisms. The book covers the green synthesis of various nanomaterials using microorganisms and agricultural waste, including the synthesis and characterization of green nanomaterials, the production of nanomaterials from agri-waste, including metallic, copper, silica, cellulose, nanopolymers and nano/micro plastics, and biological methods such as agricultural and microbial synthesis of metallic/metal oxide, magnetic, silver, copper, nanomaterials and nanonutrients. This is an important reference source for plant scientists, materials scientists and environmental scientists who want to understand this new generation of sustainable nanomaterials. The synthesis of nanocellulose materials from agri-wastes is an emerging alternative for waste treatment methods, developing new biosensors and antimicrobial agents. Silicon nanoparticles are an additional ingredient for the improvement of crop yields. With recent advances in nanomaterials synthesis performance and the discovery of their biomedical, environmental and agricultural applications, it is hoped that the implementation of these methods will be used at large-scale for industrial applications in different sectors. Highlights recent methods to produce bionanomaterials from agricultural waste and microorganisms Explores the use of agri-waste in environmental and agricultural applications Assesses the major challenges for using agri-waste to create eco-friendly nanomaterials at large scale
This book discusses the unique interactions of nanoparticles with various biomolecules under different environmental conditions. It describes the consequences of these interactions on other biological aspects like flora and fauna of the niche, cell proliferation, etc. The book provides information about the novel and eco-friendly nanoparticle synthesis methods, such as continuous synthesis of nanoparticles using microbial cells. Additionally, the book discusses nanoparticles' potential impact in different areas of biological sciences like food, medicine, agriculture, and the environment. Due to their advanced physicochemical properties, nanoparticles have revolutionized biomedical and pharmaceutical sciences. Inside the biological milieu, nanoparticles interact with different moieties to adopt stable shape, size, and surface functionalities and form nano-biomolecular complexes. The interaction pattern at the interface form complexes determines the fate of interacting biomolecules and nanoparticles inside the biological system. Understanding the interaction pattern at the nano-bio interface is crucial for the safe use of nanoparticles in natural sciences. This book rightly addresses all questions about the interaction and the ensuing structure and function of these nano-biomolecular complexes. This book caters to students and researchers in the area of biotechnology, microbiology, and pharmaceutical sciences.
Green Synthesis, Characterization and Applications of Nanoparticles shows how eco-friendly nanoparticles are engineered and used. In particular, metal nanoparticles, metal oxide nanoparticles and other categories of nanoparticles are discussed. The book outlines a range of methodologies and explores the appropriate use of each. Characterization methods include spectroscopic, microscopic and diffraction methods, but magnetic resonance methods are also included as they can be used to understand the mechanism of nanoparticle synthesis using organisms. Applications covered include targeted drug delivery, water purification and hydrogen generation. This is an important research resource for those wishing to learn more about how eco-efficient nanoparticles can best be used. Theoretical details and mathematical derivations are kept to a necessary minimum to suit the need of interdisciplinary audiences and those who may be relatively new to the field. Explores recent trends in growth, characterization, properties and applications of nanoparticles Gives readers an understanding on how they are applied through the use of case studies and examples Assesses the advantages and disadvantages of a variety of synthesis and characterization techniques for green nanoparticles in different situations
Biological Synthesis of Nanoparticles and Their Applications gives insight into the synthesis of nanoparticles utilizing the natural routes. It demonstrates various strategies for the synthesis of nanoparticles utilizing plants, microscopic organisms like bacteria, fungi, algae and so forth. It orchestrates interdisciplinary hypothesis, ideas, definitions, models and discoveries associated with complex cell of the prokaryotes and eukaryotes. Highlights: Discusses biological approach towards the nanoparticle synthesis Describes the role of nanotechnology in the field of medicine and its medical devices Covers application and usage of the chemicals at the molecular level to act as catalysts and binding products for both organic and inorganic Chemical Reactions Reviews application in physics such as solar cells, photovoltaics and other usage Microorganisms can aggregate and detoxify substantial metals because of different reductase enzymes, which can diminish metal salts to metal nanoparticles. The readers after going through this book will have detailed account of mechanism of bio-synthesis of nanoparticles.
Food, Medical, and Environmental Applications of Nanomaterials is designed to cover different types of nanomaterials that have applications related to the environment, food and medicine. It is an important resource for materials scientists and bioengineers looking to learn more about the applications of nanomaterials for sustainable development applications. Nanoscale materials possess excellent properties that have been explored in the areas of biomedicals, food, agriculture, the environment, catalysis, sensing and energy storage. Examples of these new applications include smart and active food packaging, nanobiosensors, bioremediation, wastewater treatment, implant coatings, tissue engineering, delivery systems for food and pharmaceutical applications, and food safety. Helps readers make decisions on the suitability and appropriateness of a synthetic route and characterization technique for a particular nanosystem Enables readers to analyze and compare experimental data and extract in-depth information about the physical properties of the polymeric gels using mathematical models Teaches users about the applications of nanomaterials for sustainable development applications
Nanomaterials: Synthesis, Characterization, Hazards and Safety explains the fundamental properties of nanomaterials, covering their types and classifications. The book includes methods of preparation and characterization of nanostructured materials. It explains the principles and fundamentals of nanomaterials, with information on both pure and composite-based materials with e nanostructures, outlines the latest developments and advances in nanomaterials, and highlights toxic effects and protection. This book is designed to appeal to a wide readership of academic and industrial researchers, focusing on nanotechnology and nanomaterials, sustainable chemistry, energy conversion and storage, nanotechnology, chemical engineering, environmental protection, optoelectronics, sensors, and surface and interface science. Provides information on major concepts and advances made in the areas of nanomaterials properties and nano safety Identifies the major physiochemical properties of nanomaterials Explores the toxicity of different class of nanomaterials and how they can be used safely